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ABSTRACT

In recent times, the research on Large Language Models (LLMs) has grown exponentially, pre-
dominantly focusing on models underpinned by the transformer architecture, and further developed
through the decoder-only models such as Large Language Models (LLM). Contemporary efforts in
this field primarily aim to enhance model capabilities by scaling up both the architecture and data
volumes utilized during training. However, there has been little exploration into reducing model
sizes while maintaining their effectiveness. In this study, we introduce three modifications to the
decoder-only transformer architecture—namely ParallelGPT (pgpt), LinearGPT (lgpt), and ConvGPT
(cgpt). These variants demonstrate comparable performances to the conventional architecture, with
lgpt outperforming it in 4 out of 7 benchmarks with less than half the parameters. We open-source
the model weights and the complete codebase for these implementations for further research.

1 Introduction

Since the debut of ChatGPT, there has been a notable increase in research on Large Language Models (LLMs) across
a broad range of disciplines, made possible by the accessibility of this technology to a diverse user base. This fastly
growing field has largely pursued two distinct paths: one aims at either scaling the model size or the training dataset
(or both) to enhance performance, while the other concentrates on refining smaller models (ranging from 1B to 7B
parameters) with high-quality data. Despite these advances, investigations into the structural modifications of the
transformer architecture itself have been relatively overlooked. Recent studies challenge the necessity of perpetually
increasing model sizes by demonstrating that the deeper layers of LLMs may have minimal influence on predictive
outcomes [1].

In this work, we explore modifications to the decoder-only transformer architecture to address current challenges in
the scalability and practical application of Large Language Models (LLMs). Recognizing the significant impact of
model size on the computational overhead of training and inference, we introduce three variants—ParallelGPT (pgpt),
LinearGPT (lgpt), and ConvGPT (cgpt)—each designed to reduce parameter count while maintaining, or potentially
enhancing, model performance.

The models presented in this paper range from 30M to 80 parameters. Our decision to train models of these sizes was
influenced by GPT-2 [2], which marked the beginning of the GPT era. We aimed to introduce architectural variations
within the vicinity of GPT-2’s size to explore similar performance characteristics. Rather than striving for state-of-the-art
results, our goal was to develop models with comparable parameters but reduced size, achieving performance similar to
the traditional GPT architecture.

We pre-trained each architectural variant on the 10 billion token subset of the fineweb-edu [3] dataset. The dataset was
chosen to match the scale of the models we wanted to train. By training on a reasonably extensive dataset, we aimed to
ensure that the models could be effectively evaluated on various benchmarks, thereby comparing the performance of
different architectures.

The remainder of this paper is organized as follows. The related works are discussed in Section 2. The modifications
made to the base architecture and the reasons for the modifications are presented in Section 3. Experimental setup and

GitHub Repository: gpt-variations
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Figure 1: Traditional GPT architecture

the results are presented in Section 4. Section 5 discusses the limitations of the research and finally Section 6 contains
the conclusion of our work.

2 Related Work

The evolution of Large Language Models (LLMs) has been heavily influenced by advances in transformer architecture,
first introduced by Vaswani et al. [4] and later adapted into decoder-only models such as GPT [5]. These models
typically focus on scaling up, using more complex architectures and larger datasets to improve performance. However,
there is growing interest in designing models that maintain strong performance while being smaller and more efficient,
addressing the need for models that are simpler to train and deploy.

Our work introduces three new variants of the decoder-only transformer architecture aimed at improving training and
inferencing efficiency: ParallelGPT (pgpt), LinearGPT (lgpt), and ConvGPT (cgpt). These models achieve similar
performance to traditional transformer architectures in text generation tasks but with fewer parameters and faster
training times. We have open-sourced the model weights and codebase to support further research.

Recent research also explores efficiency-focused architectures. For example, the Funnel-Transformer [6] reduces
computational costs by compressing the sequence of hidden states through a pooling mechanism, allowing the model to
expand in depth or width without increasing the overall cost.

The MobiLlama model [7] is another example, optimized for use in resource-constrained settings. It uses a parameter-
sharing strategy within transformer blocks to minimize both pre-training and deployment costs, aligning with the goal
of creating smaller, more efficient models.

Innovative attention mechanisms have also contributed to more efficient LLMs. Grouped Query Attention [8] reduces
the complexity of attention calculations by grouping inputs, effectively lowering the computation from quadratic to
linear, which helps in handling longer sequences. Multi-Query Attention [9] further improves efficiency by allowing
multiple queries within a single attention head, enhancing the model’s ability to gather and process diverse information.

These advances reflect a clear trend toward making LLMs not just more powerful but also more adaptable to prac-
tical constraints like size and computational limits. Our work builds on this trend by exploring novel architectural
modifications that offer a balance between performance and efficiency.

3 Architectural modifications

In this section, we introduce three novel architectures derived from the traditional GPT architecture to address various
limitations in training and inference. These architectures are designed to enable faster training and inference. The three
proposed architectures are ParallelGPT (pgpt), LinearGPT (lgpt), and ConvGPT (cgpt).
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3.1 ParallelGPT

In a traditional GPT architecture, the N decoder blocks of the same dimensionality are stacked on top of each other.
The drawback of such an architecture is that as N increases, the deeper blocks have little information to work with.
Also recent research [1] point out the inefficiency of the deeper layers thereby questioning the need for increasing N .
To overcome these drawbacks, we propose splitting the N decoder blocks into P parallel blocks such that each parallel
path Pi consists of N/P decoder blocks. Each Pi has a preceding dense layer PDi to process the incoming token
embeddings. The reason for introducing a dense layer before each parallel block is to make sure that each block learns
something different. A vector of learnable weights W ∈ RP is used to combine the outputs of each of the parallel
blocks. The following set of equations give the mathematical representation of the architecture.

hi = PDi(x), for i = 1, 2, . . . , P (1)

yi = fi(hi), for i = 1, 2, . . . , P (2)

αi =
exp(wi)∑P
j=1 exp(wj)

, for i = 1, 2, . . . , P (3)

y =

P∑
i=1

αi · yi (4)

We designed this architecture so that we can have the following benefits:

• Faster training, as each parallel block Pi can be assigned to a separate compute node, allowing them to be
trained in parallel.

• During inference, we have the flexibility to drop 0 to P − 1 number of blocks based on the required inference
speed, trading off some output quality for faster performance.

A point to note here is that we have used a simple weighting mechanism for combining the outputs but other methods
like mixture of experts, gating functions can also be used, which we leave for future research.

3.2 LinearGPT

As discussed in [1], the earlier layers contribute more to the generation capabilities of an LLM than the deeper layers.
This questions the need for each decoder block having the same dimension as this results in the model having much
more parameters than that is actually needed for the desired performance. The extra parameters of the model might also
result in the model overfitting to the training set which LLMs are known to do.

To address these issues, we propose an architecture, lgpt, in which the dimension of the decoder blocks keeps reducing
by half as the embedding of a token passes through the architecture. This concept is inspired from the continuous
downsampling of images in CNNs for a task like image classification. To make sure that the dimension of the embedding
of a token does not get too small by the time it reaches the classification head, we only reduce the dimension after every
n number of decoder blocks. This is done by introducing a dense or a linear layer after every n decoder blocks. The
following equations 5, 6 and 7 give a mathematical representation for the architecture discussed. Here Di represents the
ith decoder block in an N number of stacked decoder blocks and Eq. 7 gives us the dimension dm of a vector before it
goes through a decoder block.

hi = Di(hi−1), i = 1, 2, . . . , N (5)

hi =

{
Lj(hi−1), if i = nj

hi−1, otherwise
(6)

dm =
d0
2m

,m =

⌊
N

n

⌋
(7)
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Figure 2: ParallelGPT

Figure 3: LinearGPT and ConvGPT

The lgpt architecture can reduce the number of parameters in the model in terms of millions or billions. The reduction
potential of this architecture is shown in the Appendix A. In the experiments we did, the number of parameters in the
traditional gpt architecture was 77.2M parameters while the lgpt architecture had only 36.4M parameters and it still
performed competitively with gpt, while outperforming it COPA and ARC Easy [10] as shown in Table 4.

3.3 ConvGPT

A one-dimensional convolution with kernel size and stride as 1 is a very similar operation when compared with the
linear operation as both of them have the same number of parameters to train and both of them carry out a matrix
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multiplication of similar dimensions but at a fundamental level both are different because of the positional context,
spatial invariance and weight sharing properties possessed by the convolutional operations. In order to find whether
using one dimensional convolution for compressing the dimensions, has a performance difference compared to the
traditional gpt and the previous architectures introduced, we introduce a third new architecture cgpt which replaces the
linear compression layers in lgpt with a one dimensional convolution layer. cgpt offers the same reduction in number of
parameters as pgpt and as can be seen from Table 4 it is competitive with the traditional gpt architecture.

4 Experimental Setup and Results

This section discusses the specific parameters we used for the experiments, the training parameters used and the results
of each architecture on various benchmarks.

4.1 Model Configuration

For each of the architecture the common hyperparameters are set as illustrated in Table 1. For the pgpt architecture, we
set the number of parallel blocks P in this experiment to 2 with each parallel path Pi having 4 decoder blocks. For the
lgpt and cgpt architectures we set n (number of blocks after which a linear or convolutional layer is introduced) as 2
resulting in the final embedding dimension to be 32. The number of parameters and the memory requirements for each
of the models are shown in Table 2, where pgpt-1, refers to a pgpt model in which the one parallel block is dropped.
Note that during training, none of the parallel blocks are dropped. During inferencing and saving the model, 0 to P − 1
blocks can be dropped to save time and memory. We have algorithmically illustrated the reduction potential of the pgpt
architecture in Appendix B

Parameter Value
context_size 1024
vocab_size 50304
n_layer 8
n_head 8
embedding_dimension 512
dropout 0.0

Table 1: Common Configuration Parameters

Model # Params Memory
gpt 77.2M 294.53MB
pgpt 77.7M 296.53MB
lgpt 36.4M 138.95MB
cgpt 36.4M 138.95MB
pgpt-1 64.8M 247.52MB

Table 2: Model Hardware Requirements

4.2 Training

We train all the models in the same training setup which we have listed in Table 3. We use a cosine decay for the
learning rate. We train each model for 5000 steps which is about 25% percent of the entire training set and the training
was stopped here as due to compute constraints. We train each model on 4xA5000 GPUs, where the gpt and pgpt
architectures took about 2 hours to train while lgpt and cgpt architectures took about 1 hour to train.

4.3 Results

In this subsection, we present the loss curves and the evaluation results of our proposed model variants, comparing their
performance on the following benchmarks

• HellaSwag: [11] Tests the model’s ability to understand commonsense reasoning and continuation of textual
descriptions, evaluating how well the model predicts the next plausible sentence in narrative-like sequences.

• WinoGrande: [12] Measures the model’s performance on pronoun resolution tasks, which challenges the
model’s understanding of context and disambiguation of pronouns in complex sentences.
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Hyperparameter Value
Batch size 16

Gradient accum. steps 8
Min learning rate 6e-5
Max learning rate 6e-4

Max steps 19000
Warmup steps 700
Weight decay 1e-1

Table 3: Training parameters

• CommonSenseQA: [13] Focuses on evaluating the model’s general commonsense knowledge and reasoning
abilities, particularly in answering multiple-choice questions based on everyday scenarios.

• ANLI (Adversarial Natural Language Inference): [14] Tests the model’s robustness and understanding of
natural language inference under adversarial conditions, requiring the model to distinguish between entailment,
contradiction, and neutral statements.

• PIQA (Physical Interaction Question Answering): [15] Evaluates the model’s grasp of physical common-
sense reasoning, specifically how well it can predict plausible actions or outcomes related to everyday physical
interactions.

• COPA (Choice of Plausible Alternatives): [16] Assesses the model’s ability to infer causality and select the
more plausible of two alternative outcomes given a premise, testing causal reasoning skills.

• ARC Easy: [10] Tests scientific knowledge and reasoning in a simplified setting, focusing on how well the
model can answer multiple-choice questions related to elementary and middle school science topics.

Benchmark gpt pgpt lgpt cgpt pgpt-1
HellaSwag 0.2625 0.2604 0.2517 0.2492 0.2527
WinoGrande 0.5036 0.4925 0.4870 0.4751 0.4933
CommonSenseQA 0.1376 0.1605 0.1458 0.1540 0.1572
ANLI 0.3300 0.3350 0.3290 0.3240 0.3340
PIQA 0.5071 0.5131 0.5185 0.5256 0.5125
COPA 0.5300 0.5200 0.5500 0.5000 0.5600
ARC Easy 0.2333 0.2439 0.2491 0.2298 0.2509

Table 4: Benchmark Results for Different Models

Table 4 shows the performance of the various proposed architectures on a set of standard benchmarks. Note that the aim
of this work is not to achieve state-of-the-art language models since the scale of the models and data used in this work
is very small compared to the state-of-the-art models. The goal of this research is to produce architectural variants that
are smaller in size with similar model parameters and have a performance comparable to the traditional gpt architecture
in the same training and evaluation environments.

Comparison with the traditional architecture: The results from the table indicate that the lgpt, cgpt and pgpt-1
architectures perform competitively with the traditional gpt architecture. The pgpt-1 outperforms gpt on 5 out of the
7 benchmarks while lgpt and cgpt outperform gpt on 4 out of the 7 benchmarks and 2 out of the 7 benchmarks
respectively. Even on benchmarks that gpt performs the best, the other models perform competitively with gpt. We
hypothesize that the possible reason for the competitive performance of the architectural variants is that the reduced
number of parameters acts as a regularization and reduces the likelihood of the model overfitting to the training data
which is usually the case in the traditional decoder-only models which can be prompted to output its training data. The
results further indicate that even with reduced number of parameters the architectural variants are competitive thereby
asking the following questions which we believe future research will answer,

• Which components of the decoder are most critical for generative capabilities?
• Is it necessary to scale uniformly across all decoder blocks, or can varied dimensional scaling offer similar or

improved results?
• Should we test different architecture designs before scaling the models?
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Figure 4: Loss comparison b/w the 4 models

Comparison b/w pgpt and pgpt-1: From the results it can be seen that pgpt-1 with just four decoder blocks is able
to perform as well as the pgpt model with eight decoder blocks. To further investigate if the network had learned to
ignore the signal for one of the parallel paths and just used the signal from the other parallel path, we checked the final
trained weight vector W ∈ R2. The weights of the parallel paths P1 and P2 were 0.5964 and 0.4036 respectively,
which shows that the model used the signal from both the paths during training and the performance of the architecture
remained robust during inference even when P2 was dropped. The results raise the following questions for future
research,

• Does each parallel path model different part of the knowledge and if so can an efficient mechanism be designed
process different sequences only with the required parallel paths?

• Can the pgpt architecture be leveraged to introduce domain knowledge more effectively compared to post-
pretraining methods like LoRA [17]? Specifically, can pgpt’s unique parallel paths enable the direct integration
of domain-specific knowledge during the pretraining stage by assigning dedicated blocks to learn varied
domain aspects, or through the addition of specialized blocks post-pretraining, thus simplifying the process
and enhancing model adaptability?

5 Conclusion

In this work, we presented three architectural variants of the traditional GPT architecture, aiming to investigate whether
models with fewer parameters can achieve performance levels comparable to the original GPT. Our results across
various benchmarks indicate that this is a promising and underexplored area of research. Through our findings, we raise
critical questions and emphasize the need for further exploration. We believe that advancing this line of research is
crucial, as AI can only reach its full potential to benefit humanity when it becomes widely accessible—a goal hindered
by the high training and inference costs of large models today.

6 Limitations

While our proposed architectures demonstrate promising results, several limitations should be noted:

• Lack of Comparative Analysis with SOTA Models: The architectural variants have not been directly
compared to state-of-the-art (SOTA) models due to resource constraints. While our research focuses on
architectures of GPT-2 scale, direct comparisons with SOTA models could provide critical insights into the
performance and efficiency of the proposed variants.
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• Computational Resource Constraints: Due to computational and scale limitations, the training of our models
was stopped after what we determined to be a reasonable number of steps. Further experiments with extended
training durations on larger compute setups are necessary to explore the limits of these architectures.

• Scalability and Applicability: The scalability of the proposed architectures to larger model sizes and datasets
remains untested. While effective at smaller scales, the performance and efficiency of pgpt, lgpt, and cgpt in
large-scale, real-world applications need further investigation. Future work should explore how these models
adapt when scaled up or deployed in complex scenarios.

• Impact of Simplified Weighting Mechanisms: The use of simple weighting for combining outputs from
parallel paths in pgpt may not fully exploit the architecture’s potential. Future research could explore more
sophisticated methods, such as gating mechanisms or mixture of experts, to enhance the model’s performance
and adaptability.

Despite these limitations, our work provides valuable insights into architectural innovations in transformer models and
opens new avenues for future research.
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A Reduction Potential of the lgpt Architecture

In this section, we illustrate the reduction potential possessed by the lgpt architecture. The python code given below
illustrates the algorithm we used for calculating the number of parameters in the traditional gpt architecture and the lgpt
architecture.

1 def calculate_params_and_reduction(config , layer_red =2):
2 # GPT Parameters Calculation
3 embedding_params = config.vocab_size * config.n_embd
4 block_params = config.n_layer * (12 * config.n_embd **2 + (config.n_embd if

config.bias else 0))
5 classification_head_params = config.n_embd * config.vocab_size
6 gpt_params = embedding_params + block_params + classification_head_params
7

8 # LGPT Parameters Calculation
9 total_lgpt_params = embedding_params

10 current_embd = config.n_embd
11

12 for i in range(config.n_layer):
13 linear_layer_params = 0
14 if i % layer_red == 0 and i != 0:
15 current_embd = max(1, current_embd // 2)
16 linear_layer_params = current_embd * 2 * current_embd
17 block_params = 12 * current_embd **2 + (current_embd if config.bias else 0)
18 total_lgpt_params += block_params + linear_layer_params
19

20 classification_head_params = current_embd * config.vocab_size
21 lgpt_params = total_lgpt_params + classification_head_params
22

23 # Reduction Calculation
24 reduction_frac = (gpt_params - lgpt_params) / gpt_params
25

26 return gpt_params , lgpt_params , reduction_frac

Listing 1: Calculation of Parameters and Reduction for GPT and LGPT Models

We count the parameters in both the gpt and the lgpt model the parameters as following: the vocab size is 50304,
context length is 1024, embedding dimension is 1600, number of layers is 48 and the number of heads is 16. In the lgpt
architecture we reduce the dimension after every 12 blocks so that the embedding dimension does not become too small.
The following results demonstrate the effectiveness of lgpt in reducing the overall model size:

• gpt Parameters: 1,635,532,800
• lgpt Parameters: 581,827,200
• Reduction in Size: 64.43%

The results show that lgpt architecture can reduce the number of parameters in the model by more than a billion
parameters for the same configuration parameters. We leave the comparison of models of this scale for future research
due to compute constraints.
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B Reduction Potential of the pgpt Architecture

In this section, we illustrate the reduction potential possessed by the pgpt architecture. The python code given below
illustrates the algorithm we used for calculating the number of parameters in the traditional gpt architecture and the
pgpt architecture.

1

2 def calculate_params_and_reduction_pgpt(config , m_parallel_paths =8, m_drop =4):
3 # GPT Parameters Calculation
4 embedding_params = config.vocab_size * config.n_embd
5 block_params = config.n_layer * (12 * config.n_embd **2 + (config.n_embd if

config.bias else 0))
6 classification_head_params = config.n_embd * config.vocab_size
7 gpt_params = embedding_params + block_params + classification_head_params
8

9 # PGPT Parameters Calculation
10 total_pgpt_params = embedding_params
11 params_per_layer = 12* config.n_embd *2 + (config.n_embd if config.bias else 0)
12 block_params = config.n_layer * params_per_layer
13 drop_block_params = m_drop *( config.n_layer // m_parallel_paths) *

params_per_layer
14 block_params -= drop_block_params
15 projection_params = (m_parallel_paths -m_drop)*( config.n_embd*config.n_embd)
16 classification_head_params = config.n_embd*config.vocab_size
17 total_pgpt_params += block_params + projection_params +

classification_head_params
18

19 # Reduction Calculation
20 reduction_frac = (gpt_params - total_pgpt_params) / gpt_params
21

22 return gpt_params , total_pgpt_params , reduction_frac

Listing 2: Calculation of Parameters and Reduction for GPT and PGPT Models

We count the parameters in both the gpt and the pgpt model the parameters as following: the vocab size is 50304,
context length is 1024, embedding dimension is 1600, number of layers is 48 and the number of heads is 16. In the pgpt
architecture we introduce 8 parallel paths and calculate the parameters during inference assuming four parallel paths are
dropped.The following results demonstrate the effectiveness of pgpt in reducing the overall model size:

• gpt Parameters: 1,635,532,800
• pgpt Parameters: 172,134,404
• Reduction in Size: 89.48%

The results show that pgpt architecture can reduce the number of parameters in the model by almost a billion and a
half parameters for the same configuration parameters. We leave the comparison of models of this scale for future
research due to compute constraints.
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