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Abstract

This thesis is focussed on development of a synthetic dialogue generation sys-

tem and the evaluation of large language models’ (LLMs) understanding of code-

switching.

Dialogue systems, used in applications like virtual assistants and customer support,

need domain-specific datasets to work well. Without these datasets, they struggle

to interact effectively. People from bilingual or multilingual backgrounds often

switch between languages, a behavior known as code-switching. The system’s

ability to understand this impacts its effectiveness.

This thesis introduces DiaSynth, a synthetic dialogue generation framework, and

CS-Sum, a benchmark for code-switching dialogue summarization. DiaSynth uses

an LLM to generate realistic conversations in domains with limited data by in-

corporating personas and Chain of Thought reasoning. CS-Sum, with three code-

switching language pairs, highlights the limitations of LLMs in understanding code-

switched dialogues.

Experiments show that DiaSynth improves the performance of the LLMs on down-

stream tasks by 16.47% and it is able to replicate performance of models trained

on human generated data up to 90.48%. Testing 10 LLMs on CS-Sum reveals that

state-of-the-art models struggle more with code-switching than with English, and

the thesis examines the specific errors they make.
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Chapter 1

Introduction

This thesis addresses two critical challenges in dialogue systems: (1) generating

high-quality synthetic dialogues for specialized English domains with limited exist-

ing datasets, and (2) evaluating Large Language Models’ (LLMs) comprehension

and summarization capabilities in multilingual, code-switched contexts. Specifi-

cally, it introduces DiaSynth (Chapter 3), a synthetic dialogue generation frame-

work for English-domain dialogues, and CS-Sum (Chapter 4), the first benchmark

designed for assessing summarization of code-switched dialogues.

Dialogue systems are essential in natural language processing (NLP), with applica-

tions spanning customer service chatbots, virtual assistants, and healthcare bots.

These systems rely heavily on large, high-quality, domain-specific datasets to effec-

tively simulate human-like conversations. However, obtaining such datasets is often

a significant challenge, especially for specialized domains like academic discussions,

healthcare, and everyday conversations. The difficulty in acquiring domain-specific

data arises due to the high costs and complexity of data collection, which is further

increased when working with low-resource languages or niche topics. As a result,

dialogue systems often struggle to generalize across multiple domains, limiting their

ability to provide effective and scalable solutions in real-world applications [1–3].

Existing approaches have attempted to address this issue by collecting domain-

specific dialogue datasets; however, these efforts face significant limitations. On

one hand, some datasets are shallow, capturing only basic conversational exchanges

that lack the depth and specificity required for domain expertise. On the other

hand, niche domain datasets, while contextually rich, suffer from limited scale,

1



2 Chapter 1. Introduction

making it challenging to develop dialogue systems that can handle a wide range

of real-world scenarios. This imbalance between depth and scale severely hampers

the development of dialogue systems in underrepresented domains, where data col-

lection is not only costly but also logistically complex. As such, there remains a

pressing need for scalable, high-quality data generation methods that can over-

come these limitations and provide the necessary diversity and richness for robust

dialogue system development [4, 5].

In addition to the challenges posed by data scarcity, another critical issue in dia-

logue systems is the difficulty in generating realistic and varied conversations. To

produce realistic dialogues, researchers have increasingly turned to persona-based

generation methods, where synthetic dialogues are enriched by simulating diverse

personalities and characteristics. This approach has been shown to improve the

realism and effectiveness of generated dialogues [4]. However, even with persona-

based generation, the scope of conversation and the variety of topics covered often

remain limited, especially in specialized domains. Thus, while personality-driven

dialogue generation has its benefits, it still faces challenges in terms of scalabil-

ity and domain-specific richness, which are crucial for creating effective dialogue

systems. Thus, frameworks such as DiaSynth (Chapter 3) directly tackle the foun-

dational challenge of dialogue data scarcity, enabling training and deployment of

dialogue systems in specialized English domains.

However, effective real-world deployment of dialogue systems goes beyond gen-

erating English dialogues. It also demands strong evaluation of these systems’

performance in multilingual contexts, especially where code-switching is prevalent.

Code-switching (CS), the practice of alternating between two or more languages in

a single conversation, is a prevalent phenomenon in multilingual societies and has

become common in social media interactions. Bilingual and multilingual speakers

often engage in CS, which adds a layer of complexity to language processing tasks.

Despite the widespread occurrence of CS, current NLP models, particularly LLMs,

struggle to fully comprehend and process CS dialogues [6], [7], [8]. Most LLMs are

predominantly trained on monolingual data, with a heavy focus on English, mak-

ing it challenging for them to handle mixed-language input effectively. As a result,

the performance of LLMs is hindered when faced with CS, leading to difficulties in

accurately interpreting multilingual prompts and producing coherent outputs.
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Existing benchmarks for evaluating the performance of LLMs in multilingual set-

tings, such as LinCE [9] and GLUECoS [10], primarily focus on word-level tasks like

language identification (LID), named entity recognition (NER), and part-of-speech

(POS) tagging. While these benchmarks are useful for assessing certain aspects

of multilingual understanding, they fall short of addressing the complexities of CS

dialogue, which requires deeper discourse-level comprehension. Summarization, a

task that demands both an understanding of the core content and the ability to

produce a coherent summary, presents an ideal challenge for evaluating LLMs’ CS

capabilities. However, there is currently a lack of datasets specifically designed

for CS dialogue summarization, with the only existing dataset, Gupshup [11], lim-

ited to a single language pair (English-Hindi). This gap in CS-specific benchmarks

highlights the need for more comprehensive tools to assess how well LLMs can

handle the intricacies of code-switched conversations.

1.1 Motivation

The development of strong dialogue systems relies heavily on the availability of

large, high-quality, domain-specific datasets. However, acquiring such datasets is

often challenging, especially for specialized domains like healthcare, academic dis-

cussions, and everyday conversations. Existing dialogue datasets typically face two

key problems: either they are shallow, lacking in depth and domain-specific detail,

or they are contextually rich but suffer from limited scale. This imbalance hampers

the development of dialogue systems that can generalize well across different topics

and domains, creating significant barriers to building scalable, adaptable systems.

Similarly, handling CS data in LLMs remains a complex challenge. Code-switching,

the practice of alternating between two or more languages in a single conversation,

is common in multilingual societies and on social media. However, LLMs, which

are primarily trained on monolingual datasets, struggle to process and understand

these mixed-language dialogues effectively. Current benchmarks for evaluating CS

understanding often focus on word-level tasks like language identification or named

entity recognition, which fail to assess the more complex discourse-level under-

standing required for tasks such as dialogue summarization. This leaves a gap

in evaluating how well LLMs can handle the intricacies of real-world multilingual

communication.
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This thesis aims to address these challenges by introducing solutions that improve

the data available for dialogue systems and provide a strong benchmark for evalu-

ating CS comprehension. Specifically, DiaSynth is proposed as a synthetic dialogue

generation framework that enables the creation of high-quality, domain-specific di-

alogues, overcoming the data scarcity issue in dialogue system development. In

addition, the CS-Sum benchmark is introduced to evaluate LLMs on the more

complex task of CS dialogue summarization, providing a comprehensive tool for

assessing the CS comprehension capabilities of current models. By addressing these

problems, this thesis contributes to powering future research in both dialogue sys-

tem development and multilingual NLP.

1.2 Contributions

This thesis presents two significant contributions in the field of natural language

processing. First, we introduce **DiaSynth**, a synthetic dialogue generation

framework that addresses the challenge of data scarcity for dialogue systems. The

contributions of DiaSynth are as follows:

• DiaSynth Framework: We propose a scalable framework for generating

high-quality, domain-specific dialogues using LLMs and CoT reasoning, which

simulates diverse and realistic dialogues tailored to different domains.

• Evaluation on Downstream Tasks: We demonstrate the effectiveness of

DiaSynth by evaluating its generated data on dialogue summarization tasks.

Models fine-tuned on DiaSynth data show an average performance improve-

ment of 16.47

• Flexibility Across LLMs: DiaSynth’s ability to generate high-quality data

using various LLMs, including both open-source and proprietary models,

makes it adaptable and robust for training dialogue systems in different do-

mains.

Secondly, this thesis introduces CS-Sum, a benchmark for evaluating CS dialogue

summarization. The contributions of CS-Sum are as follows:
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• CS-Sum Benchmark: We present the first-ever benchmark for CS dialogue

summarization, containing 1.4K CS dialogue-summary pairs across three lan-

guage pairs—Mandarin-English, Tamil-English, and Malay-English—enabling

comprehensive evaluation of LLMs on this complex task.

• Evaluation of LLM Performance: We conduct a detailed evaluation of 10

state-of-the-art LLMs on CS-Sum, using multiple evaluation settings like few-

shot and fine-tuning, and provide in-depth analysis of model performance,

highlighting their struggles with code-switching dialogue comprehension.

• Error Analysis and Insights: We perform a thorough error analysis, cat-

egorizing the common errors made by LLMs in summarizing CS dialogues,

including Code-Switching Loss (CSL), Meaning Shift from Poor Translation

(MST), and Speaker Misattribution (SMA).

1.3 Outline of the Thesis

This thesis is divided into 5 chapters. The following is an overview of each chapter:

• Chapter 2 reviews relevant content on synthetic dialogue generation and vari-

ous benchmarks available for evaluating NLP models on code-switching tasks

• Chapter 3 discusses DiaSynth, the proposed framework for generating realis-

tic and large scale synthetic dialogues.

• Chapter 4 introduces the CS-Sum benchmark, along with a detailed analysis

on the struggles of LLMs when it comes to CS.

• Chapter 5 concludes the thesis and discusses the future work.





Chapter 2

Literature Review

This chapter presents a comprehensive review on synthetic dialogue generation and

the current state of code-switching NLP.

In the current world, dialogues systems are everywhere, powered by deep learning

models and they are present in almost all fields, ranging from healthcare to cus-

tomer support. For the models to be really effective they need to be trained on

high quality dialogue datasets that would enable to the models to interact effec-

tively and accurately with the users. Since acquiring domain specific dialogues is

too costly and existing datasets are either too generic [12, 13] or small in scale [2],

synthetic data with personas is seen as an effective solution to address the problems

of scale and domain specificity. Section 2.1 provides a comprehensive review on

current state of synthetic dialogue generation.

The study of CS in NLP has gained significant traction in recent years, since

speakers who speak more than one language are far more than monolingual speak-

ers [14] and recent studies [15] have shown that people prefer to interact with LLMs

in code-switch. Code-switching [16], where speakers alternate between languages

within a single conversation or even sentence, has traditionally been explored using

linguistic theories. However, with the rise of multilingual LLMs, researchers have

increasingly turned to machine learning-based approaches to better handle CS in

real-world applications. Despite this progress, LLMs still face notable challenges

in effectively processing CS data, primarily due to issues related to data scarcity,

model robustness, and task-specific evaluation. Section 2.2 provides a comprehen-

sive review on the current state of Code-Switching NLP.

7



8 2.1. Synthetic Dialogue Generation

2.1 Synthetic Dialogue Generation

2.1.1 Personality in Synthetic Data Generation

In recent years, there has been a significant increase in research focused on syn-

thetic dialogue generation, largely driven by advancements in LLMs. To generate

realistic and diverse synthetic data, researchers have incorporated personalities,

profiles, and character information when prompting LLMs to generate dialogues

[4]. By enhancing dialogue realism through the simulation of various personal-

ity profiles, utilizing the Big Five personality model, and employing structured

prompts, this approach has improved task performance in models fine-tuned on

these generated dialogues compared to those trained on general chit-chat datasets.

Moreover, integrating personas into synthetic data generation prompts [5] has

demonstrated that models fine-tuned on personalized synthetic data outperform

some LLMs of much larger scales. The inclusion of personas in prompts provides

diversity in difficulty levels and ranges within the synthetic data, enabling the

models to handle situations of varying complexity.

2.1.2 Prompting Task-Oriented Dialogue Generation

Prompt-based techniques have also emerged as powerful methods for generating

high-quality synthetic dialogues, particularly for task-oriented dialogue systems.

[17] explore the generation of synthetic dialogues from structured prompts, focus-

ing on enhancing task-oriented dialogue systems. Their work demonstrates that

prompt engineering can produce dialogues that are contextually appropriate and

improve system performance by aligning synthetic data more closely with real-

world requirements.

To achieve a higher quantity, diversity, and creativity in human-written instruction

data, [18] propose inputting prompts to LLMs to generate instructions based on a

small set of seed human-written instructions. This approach aligns the expanded

training data more closely with desired task objectives and allows for iterative

improvements, producing more nuanced and effective dialogues that meet specific

task demands.
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2.1.3 Existing Task-Oriented Dialogue Datasets

In addition to prompt-based synthetic data generation, various large-scale dia-

logue datasets have been instrumental in advancing task-oriented dialogue systems.

Among these, the MultiWOZ dataset [3] is a prominent resource, providing richly

annotated dialogues across multiple domains. MultiWOZ has enabled researchers

to train models capable of handling complex, multi-turn interactions across diverse

tasks. The nature of MultiWOZ’s annotations has made it a benchmark for eval-

uating the performance of dialogue systems, though it is often complemented by

synthetic data to introduce further diversity and variation in dialogue scenarios.

Similarly, Doc2Dial [1] is another widely used dataset designed specifically for

document-grounded dialogue systems. Doc2Dial includes conversations grounded

in structured documents, focusing on providing users with accurate and relevant

information based on their inquiries. This dataset has been instrumental in im-

proving the ability of dialogue systems to retrieve and generate accurate responses

when interacting with complex information sources. However, much like Multi-

WOZ, Doc2Dial’s scope is limited to the predefined topics and domains covered

within the dataset, which can restrict model generalizability to new or unseen

situations.

2.2 Code-Switching

2.2.1 Current State

Recent studies [7, 8] have demonstrated that while LLMs like GPT-4 show promise

in certain CSW tasks such as sentiment analysis and machine translation, their per-

formance remains inconsistent, particularly when dealing with complex and heavily

mixed-language text. These models often struggle with the syntactic and seman-

tic nuances required for handling code-switched dialogue, especially in scenarios

with multiple languages or dialects. The lack of extensive, high-quality, and pub-

licly available datasets further exacerbates these challenges, limiting the ability to

fine-tune LLMs effectively for CS tasks.
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Furthermore, the predominant use of high-resource language pairs, such as English-

Spanish or Hindi-English, has led to a lack of diversity in the datasets used to

train these models. This bias toward certain language combinations has hindered

progress in CSW research for underrepresented languages, such as Tamil-English

or Arabic-English. Researchers have called for a more inclusive approach to CS

research, focusing on a wider variety of language pairs and dialects to better reflect

real-world multilingual communication [7]. In addition, while neural networks and

pre-trained models have shown some promise in improving CSW performance, the

lack of interpretability in these models and the ongoing scaling challenges present

significant obstacles to their widespread adoption in practical NLP applications [6].

Ultimately, while advancements have been made, there is still a need for more

diverse and accessible datasets, as well as improved evaluation metrics, to assess

the effectiveness of LLMs in processing code-switched text. The future of CS

research lies in scaling models to handle a broader range of languages, enhancing

the interpretability of these models, and addressing the methodological gaps that

currently limit their performance [19].

2.2.2 Code Switching Datasets

LinCE: The LinCE dataset [9] consolidates multiple corpora to address lin-

guistic code-switching (CS) in NLP. It includes data from four language pairs:

Spanish-English, Nepali-English, Hindi-English, and Modern Standard Arabic-

Egyptian Arabic. The dataset supports four core tasks: language identification

(LID), named entity recognition (NER), part-of-speech (POS) tagging, and sen-

timent analysis (SA), offering a comprehensive testbed for CS models. With 10

datasets, including 4 for LID, 3 for NER, 2 for POS, and 1 for SA, LinCE contains

tens of thousands of tweets. However, it has limitations, including uneven class

distribution and challenges in handling low-resource languages.

GLUECoS: GLUECoS [10] is a benchmark for code-switched languages, fo-

cusing on English-Hindi and English-Spanish pairs. It covers tasks like LID, POS

tagging, NER, sentiment analysis, question answering (QA), and natural language

inference (NLI). The dataset includes annotated corpora from various domains,

with both word-level and sentence-level tasks. While the dataset is comprehensive,
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with large annotations for tasks like NER and sentiment analysis, it faces chal-

lenges like the scarcity of high-quality code-switched data and the complexity of

code-switching in certain tasks.

GupShup: GupShup [11] is a dataset designed for abstractive summarization

of Hindi-English code-switched conversations. It contains over 6,800 multi-party

conversations, totaling 76,330 utterances, with corresponding human-annotated

summaries in both English and Hindi-English. The primary task is generating En-

glish summaries from code-switched conversations, aiding the study of models for

both translation and summarization. However, GupShup has limitations, including

the complexity of code-switching patterns, informal language, and the relatively

small and specialized conversational context, limiting its applicability to diverse

real-world scenarios.

ASCEND: ASCEND [20] is a corpus for studying spontaneous Chinese-English

code-switching in multi-turn conversations. It includes 10.62 hours of audio from

23 bilingual speakers across Hong Kong, Taiwan, and Mainland China, with 49

informal conversation sessions on topics like education and sports. The dataset

features both intra- and inter-sentential code-switching, comprising around 12,300

utterances and 145,146 tokens. ASCEND is primarily used for automatic speech

recognition (ASR) model training, with baseline results showing a character error

rate (CER) of 22.69%. However, its limitations include a small speaker set and a

narrow range of conversational styles, limiting its broader applicability.

CroCoSum: CroCoSum [21] focuses on cross-lingual code-switched summa-

rization, specifically for technology news. The dataset includes over 24,000 English

articles and 18,000 human-written Chinese summaries, with 92% of the summaries

containing code-switched phrases. The main task is generating Chinese summaries

from English articles, with a focus on code-switching between the languages. Al-

though CroCoSum is valuable for studying code-switching in multilingual models,

it is limited by its domain-specific focus on technology news and the use of code-

switching mainly in named entities, rather than more complex linguistic patterns.

Though other datasets exist [22–24], these datasets were the most relevant due to

their recent development and focus on real-world code-switching scenarios. While



12 2.3. Summary

current LLMs have become proficient in word-level tasks such as language identi-

fication and named entity recognition, these datasets still fall short of addressing

the complexity of sentence-level tasks, such as summarization, sentiment analysis,

and cross-lingual understanding. This gap highlights the need for a more compre-

hensive benchmark that highlights the hidden deficiencies in LLMs when handling

multiple CS language pairs.

2.3 Summary

This chapter reviewed the current advancements in synthetic dialogue generation

and the state of code-switching in NLP. From the review, we conclude that while

significant progress has been made, there is still a lack of scalable and domain-

specific frameworks for synthetic dialogue generation. Existing methods fail to

address these challenges adequately, especially in terms of scalability and domain

specificity.

Regarding code-switching in NLP, it is evident that LLMs, though effective at

word-level tasks such as LID and NER, still struggle with more complex sentence-

level tasks like sentiment analysis or QA. Furthermore, the current code-switching

datasets either lack sufficient linguistic diversity (in terms of code-switching lan-

guage pairs) or fail to tackle sentence-level tasks, leaving a gap in our understanding

of the deficiencies in LLMs when handling code-switched data.



Chapter 3

DiaSynth: Synthetic Dialogue

Generation Framework for Low

Resource Dialogue Applications

In this chapter, we propose DiaSynth - a synthetic dialogue generation framework

with a specific focus on scalable and controllable dialogue generation for low re-

source applications. DiaSynth addresses the problem of lack of large-scale domain

specific dialogue datasets through a multi stage process. The steps involved in this

multi stage process are generating sub-topics, generating personas and their combi-

nations, using CoT [25] to let the LLM decide the setting of a dialogue and finally

generating the dialogue. This chapter is organised as follows: Section 3.1 describes

the DiaSynth framework, Section 3.2 describes the experimental setup for using

and evaluating DiaSynth, Section 3.3 provides the results, Section 3.4 provides ab-

lation and hallucination studies and finally Section 3.5 provides a summary of the

chapter.

3.1 DiaSynth

DiaSynth is a synthetic dialogue generation framework designed to address the

scarcity of high-quality, large-scale, domain-specific dialogue datasets. DiaSynth

uses an LLM and CoT reasoning to simulate diverse, nuanced dialogues.

13
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Figure 3.1: DiaSynth Architecture

DiaSynth takes a list of user-provided topics to generate dialogues. The users

can optionally provide few-shot examples of the format in which they want the

dialogue to be generated. Directly generating dialogues from user topics would be

too superficial due to their lack of specificity. To overcome this lack of specificity,

we generate m sub topics for each of the n topics given by the user. Generating

dialogues from the subtopics will have specificity but the dialogues will lack variety.

This is because every dialogue is influenced implicitly by the personas of the people

involved in the dialogue and, other characteristics such as the location, emotion

and more. To enhance variety and depth, we generate p personas per subtopic

and create dialogues for all persona-subtopic combinations. To further ground the

dialogues in various settings and characteristics, we employ CoT reasoning during

the generation process. DiaSynth employs CoT to reason about the settings and

characteristics of a dialogue, which are listed in subsection 3.1.3, ensuring that the

dialogues are contextually rich and realistic. This three-stage pipeline not only

guarantees the quality of the generated dialogues but also allows for exponential

scalability.
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3.1.1 Subtopic Generation

Subtopic generation is a crucial step in DiaSynth’s pipeline, since it enhances the

specificity and depth of the dialogues that will be generated later. For each pri-

mary topic given by the user, DiaSynth generates multiple subtopics, effectively

narrowing the focus of the conversation. This breakdown is necessary because the

primary topics are often too general to generate contextually rich dialogues on

their own. For instance, a topic like “healthcare” can be expanded into subtopics

such as “doctor-patient consultations,” “mental health discussions,” and “medical

diagnostics,” each of which offers a more focused context for dialogue generation.

To achieve this, DiaSynth prompts an LLM to generate the user specified number

of subtopics for each primary topic. We also run a similarity check between each

of the subtopics and remove subtopics that are too similar to other subtopics using

a threshold.

3.1.2 Persona Generation

Personas of the individuals involved in a conversation are primary influencers in

determining how a conversation pans out. Using random personas from persona

datasets and prompting the LLM to simulate a dialogue between them about a

random topic often leads to superficial dialogues that lack depth and contextual

richness. To address this issue, DiaSynth generates a user-specified number of

personas for each subtopic, ensuring that the personas are conditioned on the

subtopic context. This conditioning prompts the LLM to create personas that

are most likely to engage in a meaningful dialogue about the subtopic, such as a

medical professional and a patient discussing ”medical diagnostics” or a researcher

and a student talking about ”academic publishing.” We also run a similarity check

for the personas too. The conditioned persona generation is crucial because it

ensures that future dialogues will not only be contextually rich but also exhibit a

high level of depth. Each dialogue will be between two personas who have relevant

expertise or perspectives on the given subtopic, allowing the conversation to explore

nuances that would otherwise be missed in a generic dialogue setting. We present

the impacts of sub-topics and personas in Section 3.4
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3.1.3 Characteristics

Table 3.1 shows different characteristics that we let the LLMs reason and decide

using CoT. Before generating the dialogues, the LLMs are prompted to first rea-

son about the various characteristics list for the dialogue given the topic and the

personas.

Characteristic Description
Age and Gender Defines demographic details, influencing style

and tone.
Familiarity Level Affects formality and depth based on relation-

ship between speakers.
Emotional States Impacts tone and flow based on emotions

(e.g., happy, sad).
Formality Level Determines level of politeness or casualness.
Duration of the Conversation Suggests the intended length and complexity

of dialogue.
Communication Medium Defines the medium, influencing style.
Topic of the Conversation Guides the content and direction of the dia-

logue.
Location of the Conversation Adds context influencing formality and con-

tent.
Agreement or Disagreement Drives dialogue dynamics based on agreement

level.
Natural Dialogue Features Adds authenticity with fillers, pauses, and

slang.

Table 3.1: Characteristics of the Dialogue for CoT Prompt

3.1.4 Dialogue Generation

The final stage in DiaSynth’s pipeline is the generation of dialogues, where all the

components—subtopics, personas, and characteristics—converge to create contex-

tually rich and realistic conversations. This step uses an LLM as the backbone and

CoT as the reasoning mechanism, allowing the model to simulate dialogues that

incorporate various aspects of human interaction. DiaSynth generates dialogues

by pairing all persona-subtopic combinations. The process also integrates prede-

fined characteristics (Table 3.1) like emotional state, formality, and familiarity to

guide the flow and style. These characteristics are defined in the CoT prompt,

guiding the LLM to generate realistic, contextually appropriate dialogues. The
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importance of CoT and the lack of it affects the quality of the dialogues, which is

shown quantitatively in Section 3.4.

3.2 Experimental Setup

In this section, we detail the experimental setup used to evaluate the effectiveness

of DiaSynth. Our evaluation focuses on two criteria - quality of the dialogues

generated and usability of the dialogues generated for a downstream task. Quality

of the dialogues is evaluated using metrics such as FED, GPTScore, and G-Eval.

We evaluate the usability of DiaSynth-generated dialogues by using summarization

as the downstream task.

3.2.1 Quality of the dialogues

To evaluate the quality of the dialogues, we employ the metrics that have been

developed for evaluating the quality of text generated by LLMs. We use the FED

[26], GPTScore [27] and G-Eval [28] metrics which are described in the following

subsections.

3.2.1.1 FED

The FED (Fine-grained Evaluation of Dialogue) metric is an unsupervised and

reference-free automatic evaluation metric for dialogue quality. It uses a pre-trained

model, DialoGPT [29], to estimate the quality of a system’s responses by calculating

the likelihood that a follow-up response (such as ”That’s interesting!”) would be

generated by DialoGPT. The key idea behind FED is to measure the likelihood

of various follow-up utterances in response to a system’s output, without relying

on any reference response. This allows it to evaluate a wide range of fine-grained

qualities of the dialogue, both at the turn level and across the entire conversation.

The formula for the FED score for a given response r in a dialogue context c is

computed as follows:
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FED(c, r) =

|p|∑
i=1

D(c + r, pi) −
|n|∑
i=1

D(c + r, ni)

Where:

• D(c+ r, pi) is the log-likelihood of DialoGPT generating a positive follow-up

utterance pi after the context c and the system response r.

• D(c+ r, ni) is the log-likelihood of generating a negative follow-up utterance

ni after the context c and response r.

The follow-up utterances for each quality include a set of positive and negative ex-

amples, which are hand-written and minimally tuned on a small subset of the data.

These are designed to reflect various dialogue qualities, such as being interesting,

engaging, fluent, relevant, etc.

3.2.1.2 GPTScore

GPTScore is an evaluation framework designed to score generated texts by us-

ing the emergent abilities of GPTs. Unlike traditional evaluation methods that

rely on model fine-tuning, GPTScore operates in a training-free manner, enabling

multi-faceted evaluation across various aspects. This framework works by assign-

ing higher probabilities to higher-quality generated texts, based on specific task

specifications and aspect definitions. By utilizing large pre-trained models such

as GPT-3, GPTScore evaluates the likelihood of text generation under the given

context, allowing for a customizable, aspect-specific assessment.

The core of GPTScore is the conditional probability defined as follows:

GPTScore(h|d, a, S) =
m∑
t=1

wt log p(ht|h<t, T (d, a, S), θ)

where h = {h1, h2, . . . , hm} represents the generated text, d is the task description,

a is the aspect definition, and S is the context (e.g., source text or reference).

T (d, a, S) is the prompt template, and wt is the weight of the token at position t.

The evaluation protocol is set through manual prompt engineering, which defines
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how the task description, aspect, and context are organized. For evaluating text

quality in terms of specific aspects, GPTScore uses evaluation aspects such as

coherence, relevance, fluency, and informativeness.

3.2.1.3 G-Eval

G-Eval is a reference-free framework designed for evaluating the quality of text

generated by Natural Language Generation (NLG) systems, using LLMs such as

GPT-4. It works by employing a CoT approach along with a form-filling paradigm

to assess the quality of NLG outputs. The system utilizes LLMs to generate a

detailed evaluation step-by-step, which is then used to evaluate various aspects of

the generated text, such as coherence, relevance, and fluency.

The evaluation process follows a structured methodology:

• Prompt-based Evaluation: The LLM is prompted with a task introduc-

tion and evaluation criteria, which define the context and metrics for evalu-

ation.

• Chain-of-Thought (CoT): The LLM generates intermediate steps (CoT)

that help break down the evaluation process into detailed steps. This allows

for a more nuanced and transparent evaluation of the text.

• Form-Filling Scoring: The evaluator then scores the generated text based

on the evaluation steps, and the final score is obtained through a weighted

summation of the probabilities of different rating tokens output by the LLM.

The formula for the final score is computed as:

score =
n∑

i=1

p(si) × si

where p(si) is the probability of each score si (from a predefined set of scores) and

the final score is a weighted sum based on these probabilities.

The framework is designed to be flexible and adaptable, providing a robust method

for evaluating the quality of generated text without relying on human-generated

references.
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3.2.1.4 Evaluation Process

To validate the framework across models and also domains, we generate data using

three open source LLMs, one closed source LLM and also use few shot examples

from two different dialogue datasets. The open sourced LLMs are - Phi-3 Abdin

et al. [30], InternLM-2.5 Cai et al. [31], LLaMA-3 Dubey et al. [32] and the

closed source LLM used is GPT-4o. The 8-bit quantized versions of the open

source LLMs were used for faster experimentation and generation. The two dif-

ferent dialogue datasets that were used as few-shot examples are DialogSum Chen

et al. [12] and SAMSum Gliwa et al. [13]

3.2.2 Downstream Task - Summarization

To evaluate the usability of the dialogues generated by DiaSynth, we choose sum-

marization as the downstream task. Summarization, a key application of dialogue

systems, aims to generate concise, contextually relevant summaries. We use three

established evaluation metrics—QAGS [33], BERTScore [34], and ROUGE-L [35]

—to assess the performance of summarization models fine-tuned on DiaSynth-

generated data. We describe the QAGS and BERTScore metrics in the following

subsections.

3.2.2.1 QAGS

QAGS (Question Answering and Generation for Summarization) is an automatic

evaluation metric designed to assess the factual consistency of generated sum-

maries. The metric aims to identify factual inconsistencies by asking questions

about the summary and comparing the answers with the original source. The

underlying intuition of QAGS is that a factually consistent summary should gener-

ate similar answers to questions based on both the summary and the source text.

This approach overcomes limitations of traditional metrics like ROUGE, which are

insensitive to factual errors.

The framework consists of three main components:
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• Question Generation (QG): A question generation model is used to gen-

erate a set of questions based on the summary. These questions are designed

to target key pieces of information in the summary.

• Question Answering (QA): A question answering model is then used to

answer these questions based on both the source text and the generated

summary. The answers from both sources are compared.

• Answer Similarity: The factual consistency score is calculated by compar-

ing the corresponding answers using a similarity function, such as token-level

F1 score.

The factual consistency of a summary is quantified by the following formula:

QAGS(Y ) = EQ∼p(Q|Y ) [D(p(A|Q,X), p(A|Q, Y ))]

Where: Q represents a generated question, p(A|Q,X) and p(A|Q, Y ) are the answer

distributions given the source article X and the summary Y , respectively. D is

a similarity function (e.g., token-level F1 score) that measures how similar the

answers are.

In practice, QAGS uses a sequence-to-sequence model for generating questions and

an extractive QA model for answering the questions. The system compares the

generated answers with the original article answers to identify factual errors. The

final score is the average similarity across all questions.

3.2.2.2 BERTScore

BERTScore is a metric for evaluating the quality of generated text by leverag-

ing contextualized embeddings from pre-trained models such as BERT [36]. It

measures the similarity between a candidate sentence and a reference sentence by

computing the cosine similarity of token-level embeddings. BERTScore addresses

two common issues in traditional n-gram-based metrics: it effectively matches para-

phrases and handles sentence reordering, thus capturing more nuanced semantic

meaning.



22 3.3. Results

The score is computed by matching each token in the reference sentence to the

most similar token in the candidate sentence. This is done by calculating the cosine

similarity between their contextual embeddings, and then combining precision and

recall into an F1 score. In BERTScore, the precision (PBERT), recall (RBERT),

and F1 score (FBERT) for a reference sentence x and a candidate sentence x̂ are

computed as follows:

RBERT =
1

|x|
∑
xi∈x

max
xj∈x̂

xT
i xj

PBERT =
1

|x̂|
∑
x̂j∈x̂

max
xi∈x

xT
i xj

FBERT =
2 ·PBERT ·RBERT

PBERT + RBERT

Where xi and x̂j represent token embeddings for reference and candidate sentences,

respectively.

3.2.2.3 Evaluation Process

We fine-tune pretrained summarization models like DistilBART, BART [37], T5

[38] and LED [39], on DiaSynth-generated dialogues and evaluate their performance

using the above metrics. We evaluate the usability of DiaSynth in two key aspects:

first, by assessing the performance improvement of models fine-tuned on DiaSynth-

generated data compared to the pretrained models; and second, by measuring the

extent to which DiaSynth-generated data reflects real-world data distribution by

comparing the performance of models fine-tuned on DiaSynth data versus those

fine-tuned on in-domain data. We also present the results of finetuning BART

and T5 on synthetic data and in-domain data on response generation in subsection

3.3.3.

3.3 Results

This section discusses the results of the data generated using DiaSynth (quality

of the data and usability in downstream tasks) with different LLMs and varying
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LLM Few-shot # Samples Avg. # of turns Avg. # of tokens per turn Diversity

Phi-3 DialogSum 1215 9.13 20.38 0.27
InternLM-2.5 DialogSum 1035 9.23 27.98 0.30

LLaMA-3 DialogSum 1154 6.86 31.99 0.29
GPT-4o DialogSum 1375 15.16 15.96 0.29

Phi-3 SAMSum 1410 13.98 13.94 0.27
InternLM-2.5 SAMSum 1135 13.96 19.07 0.29

LLaMA-3 SAMSum 1195 10.54 20.41 0.29
GPT-4o SAMSum 1380 15.43 13.53 0.28

Table 3.2: Data Statistics

few-shot examples. Specifically, we utilized Phi-3, InternLM-2.5, LLaMA-3 and

GPT-4o as the LLM backbones, and the few-shot examples were sourced from Di-

alogueSum and SAMSum datasets. These combinations allow us to evaluate the

robustness and adaptability of DiaSynth across different models and few shot ex-

amples. In total, eight distinct datasets were generated using DiaSynth by pairing

each LLM with the two sets of few-shot examples, resulting in all possible com-

binations. For each combination, DiaSynth was provided with the same 16 broad

topics and tasked with generating 6 subtopics for each topic, followed by creating

6 personas for each subtopic. The statistics of the datasets generated using Di-

aSynth, including the number of dialogues, average number of turns, and average

number of tokens per turn, are summarized in Table 3.2. All the experiments were

run on a single A100 GPU with the generation time ranging from 2 hours to 4

hours.

3.3.1 Quality of the Dialogues

The quality of the synthetic datasets produced by DiaSynth was evaluated using

FED, GPTScore, and G-Eval metrics, as detailed in Tables 3.3, 3.4, and 3.5. The

results reveal distinct variations in performance across different model and dataset

configurations, reflecting the unique characteristics of each.

3.3.1.1 Metric Scores

FED: The FED scores in Table 3.3 show that LLaMA-3 and GPT-4o achieve

almost a perfect score (+1) in most of the criteria, while Phi-3 and InternLM-2.5

also have decent performances. GPT-4o has a clear advantage when it comes to

generating likeable dialogues while there is not much separation on other criteria.
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Criteria
Dialoguesum Samsum

Phi-3 InternLM-2.5 LLaMA-3 GPT-4o Phi-3 InternLM-2.5 LLaMA-3 GPT-4o

coherent 0.9536 0.8439 0.9684 0.9525 0.9161 0.8746 0.9829 0.9939
error recovery 0.9440 0.8313 0.9522 0.9407 0.9088 0.8647 0.9677 0.9876
consistent 0.9540 0.8359 0.9570 0.9417 0.9199 0.8734 0.9757 0.9878
diverse 0.9534 0.8353 0.9596 0.9423 0.9161 0.8655 0.9712 0.9836
depth 0.9521 0.8352 0.9592 0.9425 0.9130 0.8661 0.9731 0.9824
likeable -0.0005 0.0048 0.0032 0.0121 -0.0004 0.0033 0.0003 0.0083
understand 0.9353 0.8278 0.9453 0.9368 0.9014 0.8582 0.9593 0.9788
flexible 3.96E-05 -0.0046 -0.0063 -0.0027 -0.0024 -0.0019 -0.0048 0.0004
informative 0.0009 0.0042 0.0063 0.0085 0.0034 0.0106 0.0100 0.0141
inquisitive -0.0033 0.0069 0.0105 0.0144 -0.0040 0.0028 0.0029 0.006

Table 3.3: FED scores

GPTScore: Results illustrated in 3.4 are surprising in that GPT-4o is the worst

performing model on GPTScore, which might require further research while LLaMA-

3 clearly dominates the other models.

Criteria
Dialoguesum Samsum

Phi-3 InternLM-2.5 LLaMA-3 GPT-4o Phi-3 InternLM-2.5 LLaMA-3 GPT-4o

coherence 0.0286 0.0069 0.0189 0.0039 0.0325 0.0128 0.0288 0.0055
diversity 0.0310 0.0196 0.0430 0.0156 0.0372 0.0408 0.0655 0.0162
flexibility 0.0218 0.0084 0.0186 0.0059 0.0260 0.0194 0.0306 0.0094
understandability 0.0193 0.0061 0.0220 0.0039 0.0270 0.0174 0.0365 0.0084
inquisitiveness 0.0363 0.0244 0.0415 0.0180 0.0395 0.0504 0.0622 0.0186
consistency 0.0369 0.0137 0.0321 0.0080 0.0415 0.0306 0.0612 0.0119
informativeness 0.0172 0.0148 0.0318 0.0097 0.0201 0.0328 0.0542 0.0129
likeability 0.0213 0.0050 0.0110 0.0026 0.0232 0.0142 0.0168 0.0038
depth 0.0117 0.0080 0.0201 0.0053 0.0126 0.0177 0.0270 0.0079
error recovery 0.0342 0.0197 0.0440 0.0135 0.0290 0.0407 0.0558 0.0199

Table 3.4: GPTScore

G-Eval: Table 3.5 highlights GPT-4o’s dominance in engagingness and naturalness

with perfect scores (3.0) for DialogSum, while InternLM-2.5 stands out in coherence

(2.9990) and groundedness (2.9973) for DialogSum, and coherence (2.9983) and

groundedness (2.9952) for SAMSum, suggesting it maintains high factual accuracy.

Dataset-Specific Performance.The contrasting performance of GPT-4o on the

DialogSum and SAMSum datasets in Table 3.3 can be attributed to the differing

structures of the dialogues in these datasets. DialogSum consists of more formal

and structured dialogues, which aligns with the typical response style of GPT-4o,

leading to its stronger performance. In contrast, SAMSum contains more casual,

human-like conversations, which might explain GPT-4o’s relatively poorer perfor-

mance, as it may not adapt as well to the informal, spontaneous nature of such

dialogues. Overall, while GPT-4o excels in natural and engaging dialogue, LLaMA-

3 offers the most versatility, and InternLM-2.5 provides a strong alternative with

high coherence and groundedness.
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engagingness naturalness coherence groundedness

DIALOGUESUM

Phi-3 2.5236 2.7238 2.6308 2.5557
InternLM-2.5 2.9995 2.9989 2.9990 2.9973
LLaMA-3 2.9987 2.9988 2.9972 2.9935
GPT-4o 3 3 3 2.9975

SAMSUM

Phi-3 2.4623 2.6821 2.5848 2.5060
InternLM-2.5 2.9992 2.9969 2.9983 2.9952
LLaMA-3 2.9976 2.9971 2.9969 2.9916
GPT-4o 2.9994 2.9977 2.9982 2.9944

Table 3.5: G-EVAL

3.3.1.2 Strong performance of LLaMA-3

The observed superiority of LLaMA-3 over GPT-4o is surprising because an 8

billion 8-bit quantized model not only competes with but also performs better

than GPT-4o in certain metrics. We hypothesize that this could be due to the

way GPT-4o was trained, which might make it more constrained in its responses,

whereas LLaMA-3, being an open-source model, operates with fewer restrictions.

This allows LLaMA-3 to exhibit greater flexibility, diversity, and adaptability in

generating dialogues, potentially explaining its better performance in certain met-

rics. These characteristics can be seen in criteria like ’inquisitiveness’ and ’likeabil-

ity’ in Table 3.4 and, ’depth’ and ’diverse’ in Table 3.3. These results suggest that

for building human-like data generation frameworks, open-source LLMs are a more

suitable choice than closed-source LLMs. The minimal constraints on response for-

matting during the training of open-source models enable them to generate more

diverse, flexible, and human-like dialogues, making them better suited for tasks

requiring natural and conversational interactions.

3.3.2 Fine-tuning and Performance Results

To validate the usability of the synthetic data generated using DiaSynth, we fine-

tuned and evaluated several pretrained language models on the task of dialogue

summarization. The summaries for dialogues generated by different LLMs were

created using the corresponding LLMs through prompting. The pretrained models

used for evaluation include DistilBART, BART, T5, and LED.
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The experimental setup is designed as follows:

• Metrics are reported on the validation and test sets of DialogSum and SAM-

Sum.

• To evaluate DiaSynth-generated data, we compared models fine-tuned on

DiaSynth data with their base versions (no fine-tuning).

• In-domain training sets were randomly sampled to match the size of the

DiaSynth-generated data, enabling fair comparison.

• The experiment aimed to quantify performance improvement of DiaSynth-

fine-tuned models and assess alignment with in-domain data distributions.

• Models were fine-tuned for 2 epochs with a learning rate of 5e-5 and a

warmup of 50 steps.

Model Before Finetuning Finetuning on In-Domain Data

QAGS BERTScore ROUGE-L QAGS BERTScore ROUGE-L

DIALOGSUM

distillbart-cnn 0.6134 0.5093 0.1950 0.5586 0.7005 0.3367
bart-base 0.7007 0.5274 0.1375 0.4789 0.6868 0.2969
t5-base 0.5901 0.5491 0.1812 0.4766 0.6953 0.2986
led-base-16384 0.8261 0.5471 0.1634 0.4872 0.7084 0.3165

SAMSUM

distillbart-cnn 0.6627 0.5500 0.2394 0.6041 0.6849 0.3578
bart-base 0.7563 0.4389 0.1765 0.5302 0.6520 0.3049
t5-base 0.5574 0.4190 0.1237 0.5460 0.6448 0.3000
led-base-16384 0.7429 0.4310 0.1812 0.5440 0.6522 0.3175

Table 3.6: Performance of models before and after finetuning on in-domain
data

The results presented in Tables 3.6 and 3.7 present the performance of the base

models, models finetuned on in-domain data and models finetuned on DiaSynth

generated data. Models finetuned on DiaSynth data generally improves the per-

formances from the BERTScore and ROUGE-L metrics. Surprisingly, for some

models (LED and BART) the QAGS scores were higher than the models finetuned

on DiaSynth. On further exploration, we found out that these models extracted

multiple sentences from the given dialogue instead of generating a summary which

led to high QAGS scores. Comparing models finetuned on in-domain data to those

finetuned on DiaSynth data reveals that DiaSynth finetuning generally enhances

factual accuracy, with BERTScore and ROUGE-L scores remaining comparable.
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The disparity in BERTScore and ROUGE-L results may be due to format vari-

ations. Models fine-tuned on in-domain data were evaluated on summaries that

matched the training format closely, while DiaSynth-fine-tuned models were trained

on LLM-generated summaries and evaluated on human-generated summaries, lead-

ing to minor format mismatches. Comparison between the different LLMs from

Table 3.7, shows that GPT-4o is better at generating dialogues and summaries

that are formal in nature while LLaMA-3 and open source LLMs would be better

for generating dialogues that are informal and casual in nature.

Model Phi-3 InternLM-2.5 LLaMA-3 GPT-4o

QAGS BERTScore ROUGE-L QAGS BERTScore ROUGE-L QAGS BERTScore ROUGE-L QAGS BERTScore ROUGE-L

DIALOGUESUM

distillbart-cnn 0.6588 0.5778 0.2187 0.6420 0.6008 0.2167 0.6586 0.6161 0.2040 0.6713 0.6242 0.2014
bart-base 0.5355 0.5958 0.2029 0.5418 0.6212 0.1897 0.5825 0.6033 0.1789 0.5590 0.6039 0.1769
t5-base 0.5937 0.5949 0.2047 0.5825 0.5941 0.1878 0.6034 0.6172 0.1959 0.6305 0.6319 0.2044
led-base-16384 0.5358 0.6129 0.2109 0.5189 0.6027 0.1606 0.5697 0.6302 0.1999 0.5791 0.6308 0.1989

SAMSUM

distillbart-cnn 0.6585 0.5931 0.2262 0.6388 0.6066 0.2422 0.6849 0.6029 0.2374 0.6757 0.6029 0.2291
bart-base 0.5648 0.5665 0.2146 0.5435 0.5663 0.2021 0.6132 0.5899 0.2345 0.5707 0.5808 0.2154
t5-base 0.5905 0.5397 0.2085 0.5457 0.5193 0.1854 0.6412 0.5054 0.1976 0.6023 0.5419 0.1979
led-base-16384 0.5883 0.5477 0.2289 0.5457 0.5615 0.2167 0.5917 0.5785 0.2390 0.5738 0.569 0.2298

Table 3.7: Performance after finetuning on synthetic data

To assess the percentage improvement and percentage coverage of the distributional

characteristics of the in-domain data by the synthetically generated data, we use

Equations 3.1a and 3.1b respectively. We use the scores of models finetuned on

LLaMA-3 generated data because of its dominance in both quality and usability.

Across the 24 reported results, the overall coverage percentage of the LLaMA-3

generated data is 90.48%. Notably, the QAGS scores of models fine-tuned on

synthetic data surpass those of models trained on in-domain data, suggesting that

synthetic data can match or even exceed in-domain data performance in some as-

pects. Excluding QAGS, the coverage percentage is calculated to be 77.07%. In

addition to the average percentages, we also present the model wise percentage

improvement and coverage in Table 3.8 and 3.8. The results presented are with

respect to the dialogues generated using LLaMA-3 and they illustrate clear im-

provements for every model, highlighting that even with moderate LLMs of small

scale (3B - 8B), high-quality synthetic dialogue datasets can be effectively created

across different domains and different dialogue formats.
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% Improvement =
After Finetuning on synthetic data - Before finetuning

Before finetuning

(3.1a)

% Coverage =
Score After Finetuning on DiaSynth data

Score After Finetuning on In-domain data
(3.1b)

Model Dialoguesum SAMSum
% Improvement % Covered % Improvement % Covered

distilbart-cnn 10.96 88.81 6.07 87.25
bart-base 9.21 90.6 16.12 94.35
t5-base 7.59 93.67 30.04 87.36
led-base-16384 2.14 89.68 15.25 90.91

Table 3.8: Summarization results for Dialoguesum and SAMSum

3.3.3 Additional Downstream Task: Response Generation

Model Before Fine-tuning In-domain Data Llama3 GPT-4o

t5-base 0.4003 0.6870 0.6572 0.6612
bart-base 0.5681 0.6875 0.6721 0.6630

Table 3.9: BERTScore evaluation of response generation models fine-tuned on
synthetic and in-domain datasets.

To further evaluate the utility of DiaSynth-generated data, we conducted an addi-

tional downstream task: response generation. This task was included to validate

the effectiveness of our synthetic data beyond summarization. For these experi-

ments, we selected Llama3 and GPT-4o as base datasets since they demonstrated

superior performance across both quality and summarization metrics. We em-

ployed BERTScore as our evaluation metric due to its effectiveness in measuring

the similarity between generated and reference responses. The results are presented

in Table 3.9.

Both models show a significant improvement in BERTScore after fine-tuning on

DiaSynth-generated data compared to the pre-trained baseline, highlighting its

effectiveness in enhancing model performance. Additionally, models fine-tuned
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on DiaSynth data achieve scores that are close to those fine-tuned on in-

domain data. For instance, t5-base achieves a BERTScore of 0.6572 on Llama3-

generated data and 0.6612 on GPT-4o-generated data, compared to 0.6870 for

in-domain fine-tuning. These results indicate that DiaSynth-generated data serves

as a viable alternative for fine-tuning response generation models, performing com-

parably to in-domain data, even in low-resource scenarios.

3.4 Ablations and Hallucination Study

3.4.1 Ablation study

To further validate the effectiveness of the DiaSynth framework, we conducted

ablation studies by evaluating the impact of removing sub-topics and personas

from the data generation pipeline. The goal was to assess their contribution to the

quality of the generated dialogues.

For these experiments, we generated approximately 960-1000 dialogues using Phi-3

and compared three settings:

• subtopics: Removing sub-topics while keeping personas.

• personas: Removing personas while keeping sub-topics.

• diasynth: The full DiaSynth-generated data with both personas and sub-

topics.

The ablation studies presented in Tables 3.10 and 3.11 demonstrate that the inclu-

sion of both personas and sub-topics significantly enhances the quality of generated

dialogues across FED and GPTScore metrics. For both DialogSum and SAMSum

few-shot examples, dialogues generated with the full DiaSynth framework, incor-

porating both personas and sub-topics, achieved the highest scores in coherence,

diversity, and consistency. This indicates that structured dialogue generation ben-

efits from incorporating diverse sub-topics while maintaining persona-driven con-

sistency.

An interesting observation arises in Table 3.10, where for the SAMSum dataset,

the best-performing configuration involved using only sub-topics without personas.
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Metric Dialoguesum SAMSum

subtopics personas diasynth subtopics personas diasynth

Coherent 0.9252 0.9584 0.9536 0.0106 0.0109 0.0325

Error Recovery 0.9022 0.9414 0.944 0.0323 0.0213 0.029

Consistent 0.9095 0.9512 0.954 0.0192 0.0415 0.037

Diverse 0.9139 0.9512 0.9534 0.0224 0.0191 0.0372

Depth 0.9193 0.9533 0.9521 0.0187 0.0158 0.0126

Likeable 0.0069 0.007 -0.0005 0.0128 0.0075 0.0232

Understandable 0.8918 0.9339 0.9353 0.0159 0.0252 0.0415

Flexible -0.0038 -0.0042 0 0.0235 0.0141 0.0395

Informative 0.0096 0.0072 0.009 0.0228 0.0155 0.021

Inquisitive 0.0129 0.0063 -0.0033 0.0334 0.0137 0.0415

Table 3.10: FED scores with DialogSum and SAMSum as base

Metric Dialoguesum SAMSum

subtopics personas diasynth subtopics personas diasynth

Coherence 0.0118 0.0098 0.0286 0.0106 0.0109 0.0325

Diversity 0.0246 0.0198 0.031 0.0224 0.0191 0.0372

Flexibility 0.0239 0.0121 0.0193 0.0235 0.0141 0.0395

Understandable 0.0137 0.0121 0.0363 0.0159 0.0252 0.0415

Inquisitive 0.0358 0.0308 0.0363 0.0334 0.0137 0.0415

Consistent 0.0175 0.0132 0.0369 0.0192 0.0415 0.037

Informative 0.0242 0.0155 0.0201 0.0228 0.0155 0.021

Likeability 0.0083 0.0076 0.0213 0.0128 0.0075 0.0232

Depth 0.0216 0.0181 0.0117 0.0187 0.0158 0.0126

Error Recovery 0.0337 0.0249 0.0342 0.0323 0.0213 0.029

Table 3.11: GPTScore with DialogSum and SAMSum as base

This deviation can likely be attributed to the more informal nature of SAMSum

dialogues, where structured personas introduce a formal communication style that

does not align well with the dataset. In contrast, in more structured datasets

like DialogSum, the addition of personas provides clear improvements, ensuring

dialogue coherence and natural flow.

Moreover, the largest improvements in quality are seen in coherence, error recov-

ery, and understandability, particularly when both sub-topics and personas are

included. While sub-topics alone contribute significantly to improving diversity

and depth, their combination with personas enhances overall dialogue quality. This

suggests that dataset characteristics play a crucial role in determining the effective-

ness of persona modeling, highlighting the need for adaptive strategies in synthetic

dialogue generation. Ultimately, these findings reinforce that DiaSynth-generated

dialogues are robust and adaptable, providing high-quality synthetic data across

both structured and informal conversational settings.
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3.4.2 Hallucination study

In addition to evaluating the quality and usability of dialogues produced by Di-

aSynth, we conducted a study on the phenomenon of hallucinations within the

generated dialogues. Hallucinations in language models refer to instances where

the output contains misleading or incorrect information or situations where the

model repeats the same content. To evaluate the occurrence of hallucinations, we

compared the generated dialogues with their respective summaries and assessed

them using two well-known hallucination benchmarks: SelfCheckGPT [40] and

ChainPoll [41]. This analysis provides insights into the prevalence of hallucina-

tions and informs strategies for improving dialogue quality in future iterations of

DiaSynth. The results are presented in Table 3.12.

3.4.2.1 SelfCheckGPT

SelfCheckGPT quantifies the self-consistency of LLM outputs by examining agree-

ment across multiple outputs from the same prompt. This assessment reveals

potential inaccuracies through metrics like SelfCheck-BertScore.

The SelfCheck-BERTScore results for various models show that hallucination levels

are at worst around 25%, which is acceptable but still indicates areas for improve-

ment. Across both datasets, Phi-3 demonstrates the most robustness, likely due to

its pretraining on structured, textbook-like data, which may contribute to greater

consistency and factual accuracy.

3.4.2.2 ChainPoll

ChainPoll utilizes a chain-of-thought prompting approach to identify hallucinations

by iteratively polling the model with structured reasoning prompts. This method

systematically detects both open-domain and closed-domain hallucinations, where

lower scores indicate fewer hallucinations.

The ChainPoll scores indicate that hallucination levels on these models are gener-

ally low, with the best performance seen by GPT-4o on SAMSum, which achieves

the lowest score of 0.120, suggesting minimal hallucinations. On the other hand,
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LLaMA-3 scores higher at 0.237 on SAMSum, indicating more frequent halluci-

nations. These findings highlight different models’ strengths in generating accurate

and reliable dialogues.

3.4.2.3 Implications for DiaSynth

The results from both SelfCheckGPT and ChainPoll evaluations suggest that Di-

aSynth, when leveraging models like Llama 3, is capable of generating dialogues

with relatively low hallucination rates. However, specific models show variability

in performance across datasets, indicating that further enhancements, such as fine-

tuning or incorporating additional guardrails, could improve DiaSynth’s robustness

in generating reliable dialogues across diverse domains.

LLM DialogSum SAMSum
ChainPoll SCGPT-BERTScore ChainPoll SCGPT-BERTScore

Phi-3 0.198 0.791 0.154 0.785
InternLM-2.5 0.199 0.726 0.159 0.716
LLaMA-3 0.205 0.793 0.237 0.733
GPT-4o 0.178 0.765 0.120 0.742

Table 3.12: Hallucination calculation for DialogSum and SAMSum few-shot
data

3.5 Summary

In this chapter, we introduced DiaSynth, a framework for generating synthetic

dialogues to address the lack of domain-specific training data for dialogue systems.

DiaSynth uses a step-by-step process that includes generating subtopics, creating

personas, and using CoT reasoning to guide dialogue generation. This process

helps create realistic and varied dialogues that reflect different settings, tones, and

conversation styles.

Our experiments showed that models fine-tuned on DiaSynth-generated data per-

formed significantly better on dialogue summarization tasks compared to base mod-

els. LLaMA-3 worked well for informal conversations, while GPT-4o was better

for structured ones. These findings highlight DiaSynth’s usefulness for generating

training data in low-resource domains, making it a valuable tool for building more

effective dialogue systems.
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CS-Sum: A Benchmark for

Code-Switching Dialogue

Summarization and the Limits of

Large Language Models

In this chapter, we introduce CS-Sum - a code-switch dialogue summarization

benchmark which consists of 1.4K dialogues in three language pairs - English -

Mandarin (EN-ZH), English - Tamil (EN-TA) and English - Malay (EN-MS). CS-

Sum benchmark is introduced to evaluate the CS comprehension of the current

SOTA LLMs (less than 10B parameters). This chapter shows that though the

LLMs perform well on monolingual data, they make subtle errors when handling

CS dialogues that completely alter the meaning of the dialogues. This chapter

is organised as follows: Section 4.1 details our data curation process, Section 4.2

presents the performances of the LLMs in various settings on CS-Sum, Section 4.3

gives a detailed analysis and examples of the different types of errors the LLMs

make when handling CS dialogues and finally Section 4.4 provides the summary of

the chapter.

33
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4.1 CS-Sum Benchmark

The goal of building the CS-Sum benchmark, was to address the lack of a bench-

mark that evaluates the CS comprehension of LLMs. We selected Mandarin (zh),

Bahasa Melayu (ms), and Tamil (ta) because these languages have large bilingual

speaker communities that frequently code-switch with English. To efficiently cre-

ate a diverse CS benchmark within resource constraints, we translated a subset

of the combined test sets from DialogSum and SAMSum. We recruited 7 native

speakers for each language to translate the English dialogues to CS dialogues in

their respective languages. The translators were native speakers, all university stu-

dents (bachelor’s or master’s level), with each assigned 200 dialogues. The entire

translation process lasted for about 5 months.

4.1.1 CS Metrics

In this section we provide a brief explanation on metrics that are used to quantify

the amount of code switching in a given corpus and report those metrics on the CS-

Sum benchmark. The five most common CS metrics [42] that are used to measure

the amount of code-switching in a corpus are:

• M-Index: The M-Index measures the balance of language distribution in

a corpus. Ranging from 0 (monolingual) to 1 (equal distribution), higher

values indicate more balanced language representation.

• I-Index (Integration Index): The I-Index quantifies the probability of

language switching between tokens. It ranges from 0 to 1, where 0 indicates

no switching and 1 represents frequent alternations between languages.

• Burstiness: Burstiness measures the irregularity of code-switching. Ranging

from -1 to 1, -1 indicates regular switching and 1 suggests bursty, clustered

switching events.

• Span Entropy: Span Entropy measures the unpredictability of monolingual

segments between code-switches. Ranging from 0 to log2(M), higher values

indicate more variation in segment lengths, making the switching pattern less

predictable.
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Language M-Index I-Index Burstiness Span Entropy Memory
EN-ZH 0.40 0.36 -0.79 0.13 -0.08
EN-MS 0.41 0.38 -0.65 0.64 -0.24
EN-TA 0.42 0.40 -0.68 0.58 -0.22

Table 4.1: CS metrics measured on the CS-Sum dataset

• Memory: Memory quantifies the autocorrelation of consecutive language

spans. Ranging from -1 to 1, -1 indicates alternating span lengths, while

1 shows similar lengths between consecutive spans, reflecting the temporal

structure of switching.

We present the CS metrics [42] on CS-Sum in Table 4.1. The values show that CS-

Sum exhibits a moderate level of code-switching, with the M-Index ranging from

0.40 to 0.42 across the three languages, indicating that switching occurs frequently

but remains balanced within the dialogues. The I-Index values (0.36 to 0.40) further

suggest that code-switching often happens within sentences, with EN-TA showing

a slightly higher degree of intra-sentential switching compared to EN-ZH and EN-

MS. The burstiness values, which range from -0.79 for EN-ZH to -0.65 for EM-MS,

demonstrate that code-switching tends to occur in bursts, with longer monolingual

segments followed by intense switching. The span entropy values indicate that

code-switching is more predictable in EN-ZH (0.13) but less so in EN-MS (0.64)

and EN-TA (0.58), suggesting that LLMs will face greater difficulty in anticipating

switch points in the latter two languages. Lastly, the memory values (-0.08 for EN-

ZH, -0.24 for EN-MS, and -0.22 for EN-TA) show that monolingual stretches of

language persist before switching, which implies that models must carefully track

these segments and manage transitions between languages in the summarization

process.

4.1.2 Gemini generated training data

To check if training on synthetic CS data improves the LLMs’ performance on

CS-Sum, we merged the training sets of DialogSum and SAMSum which resulted

in 19014 pairs of English dialogue and summary. The merged set was converted

to CS dialogues (EN-TA, EN-MS, EN-ZH) by using Gemini-2 1 [43] which we call

1https://ai.google.dev/, gemini-2-flash-exp
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(a) ZH Distribution (b) TA Distribution

(c) MS Distribution

CS-Sum-Syn. To compare the difference in distribution between CS-Sum and

the CS-Sum-Syn, we present the CS metrics for the three languages in Figures

4.1a, 4.1b and 4.1c. From the figures, it can be seen that the CS metrics distri-

bution of CS-Sum-Syn for EN-MS and EN-TA languages are similar to CS-Sum

(human generated) while there is a significant difference for EN-ZH likely because

Gemini-2 produces more unpredictable switching (higher span entropy), less bursty

transitions, and longer monolingual spans, suggesting that it struggles with natural

EN-ZH alternation and tends to insert CS at unnatural positions.

The conversion process involved using the following prompt to generate CS dia-

logues for three languages, augmented with few-shot examples. The prompt en-

sures that the code-switched dialogues follow the structure of the original English

dialogues:
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CS pair KL Div. JS Div.
EN-ZH 2.4786 0.4918
EN-MS 0.5481 0.1454
EN-TA 0.5089 0.1017

Table 4.2: Divergence

Example Prompt for Malay-English Code-Switching

You are a {Malay/Tamil/Chinese} person in your 20s.

You are recruited for translating English dialogues to English-

{Malay/Tamil/Chinese} code-switched dialogues.

The code-switched dialogues should follow the same structure as the English dia-

logue.

This is for educational purposes, so DO NOT include swear words in your trans-

lation.

Return just the code-switched dialogue.

To quantify the difference in the distributions we measured the Jensen-Shannon

divergence [44] and KL divergence [45] between CS-Sum and CS-Sum-Syn for each

CS language pair which is presented in Table 4.2. The higher values for EN-ZH

compared to the other language pairs, reinforce the inference from Figure 4.1a.

The synthetic data generation process is described in Appendix ??.

4.2 LLM performance on CS-Sum

In this section we present the performance of ten LLMs (9 open-source 2 and 1 pro-

prietary LLMs) on CS-Sum under different settings, namely, Few-Shot, Translate-

Summarize, LoRA and QLoRA. In LoRA and QLoRA settings, the open-source

models are finetuned on CS-Sum-Syn. The open-source LLMs that are presented

are LLaMA-3-8B [46], Mistral-7B [47], Ministral-8B 3, Gemma-2-2B and Gemma-2-

9B [48], Qwen2.5-2B and Qwen2.5-7B [49], SEA-Lion-Gemma-9B 4 and SEALLM-

7B [50]. The proprietary LLM that is used is GPT-4o [51].

2Intruction tuned versions
3huggingface.co/mistralai/Ministral-8B-Instruct-2410
4https://sea-lion.ai/
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These LLMs were selected due to their multilingual exposure during pretraining

and their diverse parameter sizes, ranging from 2B to 9B. Open-source models such

as LLaMA-3-8B, Mistral-7B, and Gemma-9B have demonstrated strong generaliza-

tion across NLP tasks, while Qwen2.5-7B, SEA-Lion-Gemma-9B and SEALLM-7B

were included for their explicit focus on multilinguality, particularly in handling

languages like Bahasa Melayu, Tamil and Mandarin. A proprietary model like

GPT-4o serve as strong baseline given its SOTA performance in cross-lingual com-

prehension.

By evaluating models across different scales and varying levels of multilingual expo-

sure during pretraining, we aim to analyze the impact of model size, multilingual

training, and task-specific fine-tuning on their ability to handle CS. LoRA and

QLoRA fine-tuning on CS-Sum-Syn improves model performance on automated

metrics, indicating better alignment with CS summaries. However, it remains

unclear whether this improvement reflects genuine CS understanding or simply a

learned ability to replicate synthetic CS patterns. To investigate this, we present

a detailed error analysis in Section 4.3 which shows that finetuning on synthetic

data does not improve the CS comprehension of the LLMs and in some cases even

worsens the comprehension.

4.2.1 Evaluation Metrics

The metrics that have been used for evaluating the generated summaries are Rouge-

L [35], BERTScore [34], SBERT-Cosine [52], Jaccard and Meteor [53]. The fol-

lowing subsections describe SBERT-Cosine, Jaccard and Meteor. Section 3.2.2.2

provides a detailed description on BERTScore.

4.2.1.1 SBERT-Cosine

SBERT (Sentence-BERT) [52] is an extension of BERT that uses a siamese and

triplet network structure to derive semantically meaningful sentence embeddings.

The embeddings are fine-tuned to capture sentence-level semantics, allowing them

to be compared using similarity measures like cosine similarity. This method over-

comes the computational inefficiency of traditional BERT models, where comparing

large numbers of sentence pairs would require excessive computation.
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SBERT uses cosine similarity to evaluate the semantic similarity between sentence

pairs. The embeddings are generated by feeding sentences into a siamese network,

where both sentences share the same weight parameters, allowing for efficient and

high-quality similarity measurements. It has been shown to significantly improve

performance in semantic textual similarity (STS) tasks compared to previous meth-

ods like GloVe embeddings and Universal Sentence Encoder.

The cosine similarity between two vectors u and v is computed as:

cosine similarity(u, v) =
u · v

∥u∥∥v∥

where u and v are the embeddings of the two sentences, and ∥ · ∥ denotes the

Euclidean norm of the vector.

SBERT has been evaluated on various tasks, including Semantic Textual Similarity

(STS) and SentEval, where it outperforms other state-of-the-art methods in many

cases. It also shows notable improvements when used in large-scale semantic search

tasks and clustering, making it a robust tool for applications requiring efficient

sentence similarity computation.

4.2.1.2 Jaccard

The Jaccard Index is a statistical measure used to evaluate the similarity and

diversity of sample sets. It is defined as the size of the intersection divided by the

size of the union of the two sets. The Jaccard Index ranges from 0 to 1, where 0

indicates no similarity and 1 indicates that the two sets are identical.

For two sets A and B, the Jaccard index is calculated as:

J(A,B) =
|A ∩B|
|A ∪B|

Where: - |A ∩ B| is the size of the intersection of sets A and B. - |A ∪ B| is the

size of the union of sets A and B.

In the context of text similarity, the Jaccard index can be used to compare the

similarity between two pieces of text by treating them as sets of words or tokens.
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Specifically, the two texts are tokenized, and the Jaccard index is computed based

on the set of words (or tokens) present in each text.

The Jaccard metric is often used in tasks like document similarity, clustering, and

classification, where the goal is to measure how similar two documents are based

on their content. It is particularly useful when the order of the words does not

matter, as it focuses solely on the presence or absence of shared elements.

4.2.1.3 Meteor

The METEOR metric [53] is an automatic evaluation measure designed to improve

upon the weaknesses of BLEU, particularly by addressing issues with recall and

word order. METEOR is based on a generalized concept of unigram matching

between a machine-generated translation and reference translations. The metric

goes beyond simple word matching by incorporating stemming, synonym matching,

and word order considerations, allowing for a more flexible and robust evaluation.

The METEOR score is calculated through a multi-stage process, where unigrams

are first matched between the two sentences based on exact matches, stemmed

forms, and synonyms. The metric uses the harmonic mean of unigram precision

and recall, which places greater weight on recall to account for the completeness of

the translation. To further improve the evaluation, a penalty is applied for word

order fragmentation, which captures how well-ordered the matched words are in

the machine-generated translation compared to the reference.

The METEOR score is computed using the following formula:

METEOR = Fmean × (1 − Penalty)

Where: Fmean is the harmonic mean of unigram precision (P ) and recall (R). The

Penalty term penalizes translations with higher fragmentation, which is calculated

based on the number of chunks of matched words. The fewer the chunks, the lower

the penalty.
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4.2.2 Few-shot and Translate-Summarize

In this subsection, we describe the experimental setup for evaluating LLMs on CS-

Sum under the Few-Shot and Translate-Summarize paradigms. These experiments

assess how well LLMs generate accurate and natural code-switched (CS) summaries

without explicit fine-tuning.

Few-shot In the Few-Shot setup, we provide each LLM with three human-

crafted examples containing code-switched dialogues and their corresponding sum-

maries. The results from this setup, will quantify the inherent CS understanding

of the LLMs for the three language pairs.

Translate-Summarize In the Translate-Summarize approach, each CS dia-

logue is first translated into English before being summarized. This serves as

a baseline to determine whether the presence of code-switching affects summary

quality. The translation step is performed by the same LLM, ensuring that the

summarization model receives only monolingual input.

4.2.3 LoRA and QLoRA Fine-Tuning for CS Dialogue Sum-

marization

In this subsection, we describe the fine-tuning process using LoRA (Low-Rank

Adaptation) [54] and QLoRA (Quantized Low-Rank Adaptation) [55] to adapt

open-source LLMs for CS dialogue summarization. Full fine-tuning of LLMs is

computationally expensive, so we utilize PEFT techniques, which reduce the num-

ber of parameters that need to be updated, while maintaining or even improving

performance. Specifically, we explore whether task-specific adaptation improves

the ability of the models to understand and generate CS dialogue.

For this experiment, the models were fine-tuned on the CS-Sum-Syn dataset. The

goal was to determine if LoRA and QLoRA could effectively adapt these LLMs

for CS comprehension without requiring extensive computational resources. The

fine-tuning process follows specific hyperparameter configurations, which are sum-

marized in Table 4.3.
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The key hyperparameters for the fine-tuning process include:

• Rank (r): This parameter controls the low-rank decomposition of the model’s

weight matrices.

• Scaling Factor (α): This factor controls the scale of the low-rank adapta-

tion.

• Learning Rate (lr): The learning rate for training the adapted model.

All models were trained for 4 epochs with a batch size of 8, using gradient accumu-

lation for 8 steps. The training process utilized a cosine learning rate schedule after

a 3% warm-up. We applied bf16 precision and gradient checkpointing for memory-

efficient training. The models were trained on an H100 GPU, with training times

varying between 1 to 4 hours, depending on the architecture and size of the LLM.

The fine-tuning hyperparameters for each model are summarized in Table 4.3.

These settings allow for efficient and effective fine-tuning across various LLMs,

enabling their adaptation for CS dialogue summarization tasks.

Model r α LR
Ministral-8B 32 32 5e-5
LLaMA-3-8B 16 16 5e-5
Qwen2.5-3B 64 64 3e-5
Gemma-2-9B 32 32 5e-5
SEA-Lion-Gemma-9B 32 32 5e-5
Gemma-2-2B 8 8 5e-5
Qwen-2.5-7B 64 64 3e-5
Mistral-7B 32 32 5e-5
SEALLM-7B 64 64 3e-5

Table 4.3: Hyperparameters used for LoRA and QLoRA fine-tuning.

4.2.4 Result Analysis

In this subsection, we present the results of the LLMs’ performance on the CS-Sum

using standard summarization metrics like ROUGE [35], BERTScore [34], SBERT-

Cosine [52], Jaccard and METEOR [53]. This comprehensive set of metrics evaluate

both word-level matching and semantic similarity.
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Model Lang ROUGE-L BERTScore SBERT-COSINE JACCARD METEOR

Gemma-2-2B
EN-ZH 0.2330 / -4 0.8876 / -0.35 0.7268 / -1.40 0.1658 / -7.64 0.2699 / -0.9
EN-TA 0.2202 / -7 0.8812 / -0.38 0.6755 / -0.85 0.1523 / -9.19 0.2453 / -5.23
EN-MS 0.2421 / -7.18 0.8898 / -0.98 0.7352 / -4.35 0.1739 / -13.52 0.2902 / -12.43

Qwen2.5-3B
EN-ZH 0.2393 / 9.88 0.8824 / 0.93 0.7143 / 1.70 0.1643 / 5.82 0.2974 / 2.05
EN-TA 0.2227 / -1.46 0.8805 / 0.44 0.6880 / -2.35 0.1468 / -0.13 0.2591 / -4.82
EN-MS 0.2408 / 6.21 0.8868 / 0.60 0.7308 / -2.25 0.1694 / 1.14 0.3100 / -4.57

Qwen2.5-7B
EN-ZH 0.2482 / 27.10 0.8106 / 11.20 0.4927 / 54.12 0.0783 / 162.62 0.1118 / 188.89
EN-TA 0.2800 / -5.11 0.8937 / -0.55 0.7081 / -2.14 0.1837 / -9.62 0.2723 / -9.20
EN-MS 0.3117 / -1.65 0.9041 / -0.46 0.7520 / -0.67 0.2122 / -8.37 0.3372 / -10.26

SEALLM-7B
EN-ZH 0.2115 / 19.25 0.8122 / 9.15 0.4836 / 45.48 0.0834 / 89.27 0.1297 / 104.29
EN-TA 0.2270 / 0.99 0.8686 / 1.21 0.6470 / 2.53 0.1336 / 3.44 0.2287 / 1.55
EN-MS 0.2575 / 8.41 0.8801 / 1.28 0.6956 / 4.91 0.1633 / 9.04 0.2800 / 5.95

Mistral-7B
EN-ZH 0.2568 / -3.10 0.8902 / -0.42 0.7208 / -0.34 0.1754 / -8.01 0.3010 / -7.82
EN-TA 0.2198 / -2.15 0.8792 / 0.04 0.6847 / -0.95 0.1470 / -6.91 0.2657 / -10.45
EN-MS 0.2421 / 1.59 0.8897 / -0.46 0.7293 / -2.15 0.1796 / -11.49 0.3084 / -8.40

Ministral-8B
EN-ZH 0.2560 / 4.23 0.8875 / 0.52 0.7037 / 1.06 0.1588 / 6.13 0.2517 / 1.15
EN-TA 0.2468 / -5.61 0.8858 / -0.18 0.6752 / -2.95 0.1561 / -3.66 0.2387 / -8.53
EN-MS 0.2700 / 6.97 0.8917 / 0.37 0.7262 / 0.03 0.1794 / 2.93 0.2843 / -0.09

LLaMA-3-8B
EN-ZH 0.2868 / -2.29 0.8845 / 0.76 0.7090 / 4.09 0.1918 / -6.99 0.2916 / 0.88
EN-TA 0.2453 / 0.47 0.8769 / 0.99 0.6707 / 3.28 0.1598 / 1.07 0.2570 / -2.13
EN-MS 0.2599 / 8.06 0.8724 / 2.04 0.6538 / 11.21 0.1804 / 0.02 0.2833 / 5.50

Gemma-2-9B
EN-ZH 0.2995 / -5.62 0.8987 / -0.27 0.7603 / -0.91 0.2054 / -5.83 0.3246 / -3.06
EN-TA 0.2761 / -3.85 0.8911 / 0.57 0.7203 / 4.42 0.1832 / 4.63 0.3107 / 1.25
EN-MS 0.3009 / -3.00 0.8975 / 0.01 0.7573 / -0.94 0.2096 / -3.96 0.3279 / -0.07

SEA-Lion-Gemma-9B
EN-ZH 0.2799 / -3.96 0.8968 / -0.34 0.7542 / -0.41 0.1820 / -4.29 0.2944 / -4.46
EN-TA 0.2703 / 0.26 0.8898 / 0.48 0.7138 / 3.79 0.1727 / -0.12 0.2884 / -2.38
EN-MS 0.2860 / -1.56 0.8963 / -0.12 0.7404 / 1.21 0.1837 / -4.16 0.2983 / -4.75

GPT-4o
EN-ZH 0.2965 / -1.03 0.8816 / 2.21 0.7082 / 9.63 0.1792 / 11.66 0.2853 / 16.52
EN-TA 0.3157 / -4.92 0.8981 / 0.39 0.7570 / 2.19 0.2041 / -0.55 0.3419 / 0.75
EN-MS 0.3126 / -1.70 0.9037 / -0.15 0.7750 / 0.12 0.2045 / 0.33 0.3365 / 1.09

Table 4.4: Few-Shot Performance/Translate-Summarize % improvement on
CS-Sum

The Few-Shot performance of the LLMs across the three CS language pairs is

shown in Table 4.4. The high scores of semantic similarity metrics like BERTScore

and SBERT-Cosine is misleading, because the summaries generated by the LLMs

do not convey the actual content of the conversation. Figure 4.2 shows a summary

generated by Gemma-2-9B for a EN-TA dialogue from CS-Sum. The ROUGE-L

scores of the LLMs are almost half of the best performing models on the monolin-

gual DialogSum 5 and SAMSum 6 benchmarks.

From Table 4.4, we observe that GPT-4o is the best performing model, but we can-

not give further reasoning on their performance due to the lack of transparency on

how the model was developed. Gemma-2-9B consistently outperforms other open-

source models across most metrics and language pairs. This aligns with findings

from the Gemma-2 paper [48], which highlights that the model was trained with

5https://paperswithcode.com/sota/text-summarization-on-dialogsum
6https://paperswithcode.com/sota/text-summarization-on-samsum-corpus
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extensive multilingual data and an optimized tokenizer designed to improve lan-

guage generalization. Despite not being specifically optimized for code-switching,

Gemma-2’s exposure to a diverse multilingual corpus enables it to handle mixed-

language text better than models with SEA-specific pretraining. In contrast, SEA-

Lion-Gemma-9B lags slightly behind, despite its specialization in SEA languages.

Interestingly most of the models underpeform on EN-ZH, which was surprising

given that all the models were exposed to ZH data during their pretraining. By

going through the summaries generated by different LLMs are because some of

the summaries generated by the LLMs are in Chinese, while it was specifically

prompted to generate the summary in English. This has led to their lower scores

in the EN-ZH pair in automated metrics but in the our finegrained analysis (Section

4.3), LLMs usually have smaller error rates on EN-ZH in comparison to other CS

pairs.

Additionally, the smaller models, such as Gemma-2-2B and Qwen2.5-3B, exhibit

noticeably weaker performance across all language pairs compared to the bigger

LLMs belonging to the same family, Gemma-2-9B and Qwen2.5-7B respectively,

showing that performance increases with scale.

Another interesting result from Table 4.4, is that the performance of SEALLM-7B

is comparable to smaller and non-SEA specific models such as Gemma-2-2B and

Qwen2.5-3B. Comparing the summaries generated we found that the in-context

learning ability of SEALLM is worse than that of the smaller models. In the few-

shot setting SEALLM-7B exhibits the following problems: (a) extracts utterances

from the dialogue, (b) describes the dialogue instead of summarizing and (c) tries

to generate the summary in languages other than English. These issues have led

to its lower performance on the CS-Sum benchmark.

Translate-Summarize % Improvement Table 4.4 presents the percentage

improvement in performance under the Translate-Summarize setting. Ideally, if

LLMs were capable of accurately translating CS dialogues into English without

losing key contextual information, we would expect a significant performance boost

in this setting. However, the results indicate otherwise—most models either exhibit

no improvement or even a decline in performance across all metrics.
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Figure 4.2: Wrong summary with high BERTScore 0.903

This suggests that rather than improving the summarization process, the trans-

lation step introduces additional challenges, likely due to the models’ inability to

correctly interpret and preserve the linguistic structures present in CS dialogues.

Notably, models like Gemma-2-2B and Qwen2.5-3B show a drop of up to 7% in

ROUGE-L, with even larger declines in Jaccard and METEOR, indicating a loss

of essential meaning when translating CS inputs.

Interestingly, Qwen2.5-7B and SEALLM-7B show gains in EN-ZH (27.1% and

19.25% in ROUGE-L, respectively), suggesting that models with explicit Mandarin

pretraining (Qwen) or SEA exposure (SEALLM) may perform better at translating

Mandarin-English CS dialogues. However, these improvements are not observed in

Tamil-English or Malay-English, reinforcing the idea that CS translation remains

highly unreliable outside of high-resource languages. The fact that most models

exhibit no improvement or even a decline in performance further confirms that

current LLMs struggle not only with summarizing CS dialogues but also with ac-

curately translating them. This drop in performance suggests that the translation

step introduces additional challenges, likely due to the models’ inability to preserve

key discourse elements and linguistic structures present in CS dialogues. The fail-

ure to retain essential meaning across translation highlights a fundamental gap in

CS comprehension, as LLMs appear to lack the necessary representations to model

the complex interleaving of languages within conversations.

LoRA and QLoRA Results Table 4.5 presents the percentage improvements

from applying LoRA and QLoRA fine-tuning techniques using synthetic data (CS-

Sum-Syn) over the Few-Shot baseline on the CS-Sum benchmark. The primary
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Model Lang ROUGE-L BERTScore SBERT-COSINE JACCARD METEOR

Gemma-2-2B
EN-ZH 9.13 / 22.26 0.15 / 1.21 3.52 / 6.23 19.28 / 21.69 15.47 / 15.78
EN-TA 21.52 / 23.29 1.62 / 1.79 12.10 / 11.86 23.88 / 29.04 19.16 / 20.98
EN-MS 16.59 / 7.98 0.76 / 0.34 4.82 / 1.26 14.51 / 2.31 8.16 / -4.92

Qwen2.5-3B
EN-ZH 38.32 / 36.44 2.72 / 2.80 10.99 / 11.20 44.42 / 41.06 21.43 / 21.29
EN-TA 39.08 / 35.50 2.73 / 2.55 12.30 / 11.96 47.58 / 45.49 30.90 / 33.84
EN-MS 34.00 / 14.60 2.11 / 1.03 5.97 / 3.56 33.91 / 17.70 16.09 / 10.70

Qwen2.5-7B
EN-ZH 40.89 / 39.07 11.95 / 12.20 59.88 / 60.92 217.69 / 208.36 234.54 / 239.63
EN-TA 22.86 / 20.85 1.83 / 1.72 11.50 / 11.10 32.72 / 30.17 35.66 / 36.26
EN-MS 9.71 / 2.06 0.74 / -0.10 6.27 / 3.64 12.16 / 1.82 11.38 / 5.36

SEALLM-7B
EN-ZH 50.45 / 51.94 11.09 / 11.21 60.22 / 60.69 170.47 / 160.94 163.13 / 142.51
EN-TA 47.99 / 43.82 4.49 / 4.52 19.84 / 19.86 75.18 / 69.14 47.14 / 35.42
EN-MS 34.20 / 17.03 3.29 / 2.53 12.01 / 27.78 47.49 / 4.22 13.08 / 27.78

Mistral-7B
EN-ZH 17.91 / 2.18 0.73 / -0.80 7.78 / 2.43 28.10 / 15.19 20.10 / 9.41
EN-TA -1.79 / -3.62 -2.20 / -2.85 3.90 / 1.90 8.93 / 6.68 13.76 / 11.95
EN-MS -11.88 / 15.12 -2.93 / 0.56 -1.21 / 2.93 -8.56 / 8.96 3.83 / -2.09

Ministral-8B
EN-ZH 9.92 / 13.16 1.15 / 0.69 9.58 / 9.85 30.37 / 34.98 29.41 / 33.61
EN-TA 18.38 / 20.88 1.41 / 1.41 13.73 / 14.13 34.19 / 36.83 35.43 / 39.83
EN-MS -24.12 / 7.51 -2.73 / 0.63 -1.64 / 4.51 -8.07 / 9.89 7.89 / 2.76

LLaMA-3-8B
EN-ZH 23.51 / 25.21 3.14 / 3.12 12.88 / 12.79 29.85 / 34.26 19.70 / 29.68
EN-TA 51.45 / 47.07 4.32 / 4.00 18.91 / 18.28 66.19 / 60.27 39.72 / 42.35
EN-MS 46.81 / 21.73 4.85 / 3.27 22.19 / 16.94 50.56 / 23.01 39.34 / 17.83

Gemma-2-9B
EN-ZH -1.45 / 10.66 0.12 / 0.82 4.10 / 2.32 8.56 / 11.61 1.68 / 7.95
EN-TA 6.54 / 19.37 0.63 / 1.56 7.14 / 9.12 18.12 / 27.89 7.28 / 13.01
EN-MS 7.81 / -6.27 0.71 / -0.61 3.60 / -1.41 8.48 / -3.45 5.31 / -7.06

SEA-Lion-Gemma-9B
EN-ZH -22.93 / -6.64 -3.10 / -0.71 -3.27 / 1.73 -4.13 / 8.67 6.29 / 14.39
EN-TA -21.48 / 3.59 -2.61 / 0.24 1.74 / 7.08 -3.49 / 20.38 7.38 / 17.21
EN-MS -21.98 / -8.08 -2.95 / -0.99 -3.53 / -0.77 -8.16 / 3.18 9.09 / 3.03

Table 4.5: LoRA / QLoRA % Improvement over Few-Shot on CS-Sum (EN-
TA)

objective of applying these PEFT methods was to assess whether synthetic CS

training data generated via Gemini-2 could mitigate summarization errors, partic-

ularly semantic distortions and information omissions (see Section 4.3).

Significant and consistent improvements are observed primarily in the EN-ZH pair.

Models like SEALLM-7B and Qwen2.5-7B achieve substantial gains (e.g., over

200% in METEOR), indicating that fine-tuning is highly effective when the target

language pair is well-represented in the pretraining corpus.

For the EN-TA pair, moderate yet reliable improvements are observed across mod-

els. SEALLM-7B achieves notable improvements (47.99% LoRA, 43.82% QLoRA

in ROUGE-L), while Qwen2.5-3B and LLaMA-3-8B also demonstrate steady gains.

However, the variability across metrics suggests that model architecture and pre-

training data significantly influence fine-tuning efficacy.

The EN-MS language pair exhibits the most inconsistent performance. While some

models benefit from QLoRA, others, such as Mistral-7B and SEA-Lion-Gemma-

9B, show performance regressions in certain metrics (ROUGE-L, BERTScore).
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Figure 4.3: Distribution b/w filtered CS-Sum-Syn and CS-Sum for EN-ZH

The instability of results suggests that fine-tuning alone does not fully resolve the

challenges of summarizing code-switched dialogues in lower-resource languages.

Despite these improvements, fine-tuning does not completely eliminate summariza-

tion errors. Semantic distortions and information omissions persist, particularly in

EN-TA and EN-MS, reinforcing the need for more effective CS-aware pretraining

strategies. The findings indicate that LoRA/QLoRA fine-tuning is most benefi-

cial when models already have a strong multilingual foundation, with the highest

impact observed in high-resource language pairs (EN-ZH), moderate but stable

improvements in EN-TA, and inconsistent outcomes in EN-MS.

4.2.5 Training on filtered data

The difference in the distribution of CS-Sum and CS-Sum-Syn for EN-ZH (see

Figure 4.1a) is much more than the differences in distribution for EN-MS and EN-

TA. We hypothesize that this might be due to the tokenization strategy of the

LLMs which is more robust for Roman script compared to Chinese script. The
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% improvement gains for EN-ZH after LoRA and QLoRA finetuning on EN-ZH is

also less compared to the other two CS pairs (Table 4.5).

To check if filtering CS-Sum-Syn to match CS-Sum’s distribution would improve

the finetuning results, we treat the CS metrics shown in Table 4.1 as a multivariate

gaussian. We calculated the mean µ and the covariance matrix Σ of CS-Sum and

used the Mahalanobis distance (eqn. 4.1) to calculate the distance between the

instances in the training set and the test set.

DM(x) =
√

(x− µ)TΣ−1(x− µ) (4.1)

We filtered the training data aggressively by selecting only the top 20 percentile

of the training instances with the shortest distances. The filtered dataset had

3801 instances. The resulting distribution is shown in Figure 4.3 which matches

CS-Sum’s distribution better than the unfiltered one (see Figure 4.1a).

We finetuned (QLoRA) all the 9 open-source LLMs on the filtered data for 3 epochs

(4 for the unfiltered one) with all the other parameters staying the same. Figure

4.4 shows the % improvement of LLMs finetuned on filtered data over the LLMs

finetuned on the unfiltered one.

It can be seen that only 2 LLMs - Mistral 7B and SEA-Lion-Gemma-9B show

actual improvement while other LLMs either don’t improve much or have worse

performances. Qwen2.5-7B suffers the worst when finetuned on filtered data. This

suggests that filtering using Mahalanobis distance may only be beneficial for certain

architectures while being detrimental to others. Further investigation is required

to determine if alternative filtering thresholds or strategies could yield better gen-

eralization across LLMs

4.3 Error analysis

In this section, we present the three major errors that LLMs exhibit when summa-

rizing CS dialogues. Our qualitative analysis of summaries generated by different

LLMs across the three CS language pairs revealed the following common failure

patterns:
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Figure 4.4: Filtered data % improvement over CS-Sum-Syn for EN-ZH

• Code-Switching Loss (CSL): The summary is generated only from the

English parts of the dialogue, ignoring or missing key information from the

non-English segments.

• Meaning Shift from Poor Translation (MST): The LLM misunder-

stands the code-switched text, leading to a summary that deviates from the

true meaning of the dialogue.

• Speaker Misattribution (SMA): The summary assigns dialogue state-

ments to the wrong speaker, changing the intended meaning or misrepresent-

ing opinions.

Figure 4.5 shows an example of the CSL category, where the summary mainly

focusses on the English parts and also wrongly says that Pam’s manager will call,

while the CS dialogue mentions that Pam will make the call. For more examples of

different categories see tables 4.7, 4.8 and 4.9. To find subtle errors like the ones in

Figure 4.5, instead of employing annotators we used GPT-4o to identify the errors

in the summaries.
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Figure 4.5: CSL error example

Model Lang CSL MST SMA
Few-Shot LoRA Few-Shot LoRA Few-Shot LoRA

Qwen2.5-7B
EN-ZH 71.64 81.75 32.84 48.91 9.70 26.28
EN-TA 91.81 79.23 76.32 58.64 57.31 32.58
EN-MS 78.95 82.05 35.96 42.74 16.67 24.79

LLaMA-3-8B
EN-ZH 74.63 71.17 35.82 45.07 16.41 21.35
EN-TA 90.94 56.92 80.70 37.89 55.85 19.93
EN-MS 73.68 62.91 40.35 33.38 14.04 17.33

Gemma-2-9B
EN-ZH 59.70 85.40 18.66 57.66 8.21 35.77
EN-TA 71.35 82.75 35.09 67.84 22.22 46.20
EN-MS 59.65 79.60 18.42 52.53 8.77 29.45

SEA-Lion-Gemma-9B
EN-ZH 53.73 83.94 11.19 76.64 3.73 52.55
EN-TA 60.53 84.50 27.78 76.61 17.54 49.71
EN-MS 48.25 86.32 14.04 64.96 7.02 46.15

Table 4.6: Comparison of error rates (%) in Few-Shot vs. LoRA fine-tuned
models across different CS language pairs.

To find how common the three errors are, in the summaries generated by different

LLMs across different languages and to answer if finetuning with synthetic data

mitigates these issues, we calculated the error rate for the three category of errors,

for Qwen2.5-7B, LLaMA-3-8B, Gemma-2-9B and SEA-Lion-Gemma-8B since the

first two LLMs showed the most % improvement among the 9 LLMs after LoRA

finetuning on CS-Sum-Syn (Table 4.5) and latter two because of their strong Few-

Shot performance (Table 4.4)
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Table 4.6 shows the error rate comparison between the Few-Shot and the LoRA

settings. The error rate on EN-ZH increases for all the LLMs after finetuning

on the synthetic data which is expected because of the difference in distribution

between CS-Sum and CS-Sum-Syn (see Figure 4.1a and Table 4.2). All the models’

error rates on EN-TA are generally higher than the other CS languages. Though

finetuning with synthetic data helps a little for Qwen and LLaMA, the scores are

still higher than the Few-Shot settings for other CS languages.

The high CSL error rates for the LLMs indicate that, more often than not LLMs

rely on the English part of the text which is a serious problem, since important

things like emotions, phrases difficult to say in English for a person whose mother

tongue is not English are usually not conveyed in English. Moderate error rates

for SMA and MST also highlight a serious issue, since attributing a person to

something they didn’t say or think and wrongly interpreting the CS parts of the

dialogues are most likely to change the entire meaning of the dialogue.

4.4 Summary

In this chapter, we introduced CS-Sum, the first CS dialogue-to-English summa-

rization benchmark across three language pairs: EN-TA, EN-ZH, and EN-MS. Our

experiments revealed that LLMs perform inconsistently across CS pairs, with some

open-source models outperforming SEA-specific models, highlighting that CS data

must be present in pretraining, not just added through fine-tuning. Furthermore,

our analysis identified three major error types—CSL, MST, and SMA—persisting

across all models, demonstrating that current LLMs lack intrinsic CS comprehen-

sion. The quantitative results reinforce the severity of these failures, showing that

fine-tuning alone does not fully resolve CS-specific challenges.
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EN Dialogue CS Dialogue LLM Sum-
mary

Error Expla-
nation

Matthew: I have a cold.
Need y’all support. It’s
painful
Lisa: Fight it. Drink orange
juice. Make some soup
Matthew: I’ll try
Lisa: I believe in u
Matthew: Thank u. Appar-
ently it’s an allergy mixed
up with virus
Lisa: Ahh it sucks.
Lisa: Take a rest from
evrthg.
Matthew: Ikr. Hitting the
hay now
Lisa: Good night ’Thew!

Matthew: Enakku cold
irukku. Unga elllaroda sup-
port um vennum. Athu
romba painful
Lisa: Atha fight pannu.
Orange juice kudi. Soup
pannu
Matthew: Naa try panren
Lisa: Naa unna believe pan-
ran
Matthew: Thank u. Athu
oru allergy and virus mix
aana onnu.
Lisa: Ahh athu kaduppu
thaan.
Lisa: Ellathula irunthum
rest edu.
Matthew: Athu enakku
theriyum. Ipo poi padukka
poren
Lisa: Apo Good night
’Mathew!

Matthew is feel-
ing unwell due
to a cold and an
allergy.
Lisa suggests
that he drink
orange juice
and soup to feel
better.
Matthew tries it
and feels a bit
better.

Matthew says
that he will
try the pill but
the summary
mentions that
he had tried it
and feels better

Anna: is anyone going to
pick Mark from the airport?
Marcus: i could but when
and where from?
Anna: Sydney, Thursday at
3
Marcus: am or pm? :D
Leslie: haha fortunately
pm:D
Marcus: hmm i have a
meeting at 1. I don’t think
i can make it
Leslie: well i guess it will
take him some time after
landing, reclaiming luggage
etc
Anna: yeah I reckon it’s fine
if you’re there at 4
Marcus: oh well ok then
...

Anna：有人去机场接Mark
吗？
Marcus：我可以，但是什
么时候去哪里呢？
Anna：Sydney， 星 期 四3
点
Marcus：am 还是pm？:D
Leslie：haha，幸运的是下
午:D
Marcus：hmm 我1 点有个
会议。我想我去不了了
Leslie：well 我想after his
landing 他 需 要 一 些 时
间，reclaiming luggage etc
Anna：是的，我认为如果
你4 点到那里没问题了
Marcus：oh 那好吧
...

Marcus origi-
nally plans to
pick up Mark at
the airport but
has a meeting at
1 PM and can’t
make it. Leslie
suggests Marcus
arrive after 4
PM to give
Mark enough
time to reclaim
luggage. Anna
will inform Mark
about Marcus’s
new plan.

Anna was the
one who sug-
gest Marcus
to go at 4 PM
which is wrongly
attributed to
Leslie

Ken: You are an idiot.
Greg: What?
Ken: Yeah you are, I want
my money back
Greg: Was your account
hacked by some prankster?
Ken: No, I’m the prankster,
just having a laugh at your
expense
Greg: Well, you are an idiot
too then XD

Ken：操你，你pimp
Greg：什么？
Ken：操你，我要回我的钱
Greg：你的账户被恶作剧
者hacked 了吗？
Ken：不，我才是恶作剧
者，只是开个玩笑以你为
代价
Greg：Well，那你也操XD

Ken and Greg
were joking with
each other. Ken
played a prank
on Greg but
now he wants
his money back.
Greg was not
happy about it

The dialogue is
just a friendly
banter and
there’s actually
no transaction
of money.

Table 4.7: Error examples
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EN Dialogue CS Dialogue LLM Sum-
mary

Error Expla-
nation

...
Person2: Large deposits of
coal were found nearly and
so many industries located
themselves here. The vil-
lage quickly grew into a key
industrial centre.
Person1: As the city grew,
it must have absorbed many
village nearby.
Person2: Yes, it did. The
names of those village sur-
vive as the names of parts
of the city.
Person1: I see. Are there
any building more than 200
years old in your city?
Person2: Oh, yes. Several
of the buildings from the vil-
lages still survive. Many of
them were inns for travelers
and today survive as pubs.
There was a castle near one
village, so our city has a cas-
tle too.
Person1: Really? So your
city does have some old his-
tory after all.

...
Person2: 附近发现了大
量coal. 许多工业都设在
这里。这个村庄迅速发展
成为一个重要的industrial
centre。
Person1: 随着城市发展，
它一定absorbed了附近的许
多村庄。
Person2: 是的。这些村庄
的名字作为城市部分地区
的名字而留存下来。
Person1: I see. 你的城
市里有超过200 年历史
的building 吗？
Person2: 村 庄 里 的 一
些buildings仍 然 保 存 完
好。其中许多都是旅客
的inns，如今作为pubs保留
了下来。一个村庄附近有
一座castle，所以我们的城
市也有一座castle。
Person1: 真的吗？原来你
们城市也有悠久的history
啊。

Person2 tells
Person1 how
their city grew
and has some
buildings over
200 years old.
Person2 also
introduces a
castle nearby

The summary
is based on
only the English
words of the
dialogue and
also Person2
talks about a
castle, does not
introduce it

Alan: ¡file photo¿
Alan: look what I just
found
Robert: dude, that’s just
nasty and you know it
Robert: it has no sugar,
no taste, and additional
cinnamon flavoring
Alan: yeah, I know - that’s
awesome
Robert: you sir have a very
strange tastes :P
Alan: well, and I found
a perfect company for it
¡file photo¿
Robert: oh, that’s more like
it!
Robert: but does the
whiskey go well with
the cinnamon? flavored
whiskey is the worst...
...

Alan: file photo¿
Alan: tengok ape aku
jumpe
Robert: dude, that’s just
nasty and you know it
Robert: it has no sugar,
no taste, and additional
cinnamon flavoring
Alan: yeah, I know - itulah
yang awesome
Robert: you sir ada tastes
pelik :P
Alan: well, and I found
a perfect company for it
¡file photo¿
Robert: oh, that’s more like
it!
Robert: Tapi does the
whiskey go well with
the cinnamon? flavored
whiskey rabak...
...

Alan shares
a photo of
a cinnamon-
flavored whiskey
with Robert,
who initially
finds it dis-
gusting. Alan
defends the
unique taste and
shares another
photo of him
enjoying it with
a companion.
Robert jok-
ingly points out
Alan’s unusual
taste preferences
but admits the
cinnamon taste
isn’t overpower-
ing when paired
with enough
whiskey. ...

The summary
wrongly states
that Alan has a
companion when
he was actually
referring to
eating cinnamon
along with it

Table 4.8: Error examples
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EN Dialogue CS Dialogue LLM Sum-
mary

Error Expla-
nation

Callan: Something’s wrong
with my Samsung S8.
Wade: What, exactly?
Callan: All I get is a black
screen.
Wade: Did you drop it or
something?
Callan: I think I know, this
has happened before.
Wade: It did? What hap-
pened before?
Callan: It overheats and
then it takes a while for it
to restart again..
Wade: That sucks.. Be
carefull with the battery, it
can be dangerous.
...

Callan: Samsung S8 aku
ada problem.
Wade: What, exactly?
Callan: Aku asyik dapat
black screen.
Wade: Kau terjatuhkan ke
apa?
Callan: Aku rasa aku tahu
kot, ni pernah happened kat
aku.
Wade: It did? What hap-
pened before?
Callan: Dia overheat pastu
it takes a while for it to
restart again..
Wade: That sucks.. Be
carefull with the battery,
boleh jadi bahaya.
...

The speaker,
Callan, is having
issues with his
Samsung S8 as
it keeps getting
black screens.
Wade suggests
it might be over-
heating. Callan
intends to take
it to a store as
it’s still under
warranty

Callan was
the one who
suggested the
phone might be
overheating

Person1: What do you
know about our company?
Person2: Well, as I know
this company is one of the
largest and best in this
field of business. It mainly
produces toys for children.
It employs more than 10,
000 people throughout the
world. The president now is
Mr. Jackson. The Shang-
hai branch was founded five
years ago with a staff of
more than 2, 000.
Person1: Very good. If you
enter this company, what
department would you like
to work in?
Person2: May I work in
sales department?
Person1: OK. Oh, how
much do you make at your
current job, if you don’t
mind my asking?
...

Person1: Enga company
pathi enna therium un-
galuku?
Person2: Indha field indha
company dhaan largest and
best nu therium. Main
focus vandhu children
toys produce panradhu.
Current president Mr.
Jackson. Shanghai la 5 year
munnadi oru branch start
panirkeenga. Anga 2000
employees irukanga. Total
ah 10000 employees.
Person1: Very good. Inga
job kedaicha, endha de-
partment la work pananum
ungaluku?
Person2: Sales department
la?
Person1: OK. Current job
la evlo earn panreenga? If
you don’t mind my asking?
Person2: Current salary
2000 yuan plus konjam
allowances and bonus ku
apram 3000 yuan per
month. Neenga evlo pay
panuveenga?
Person1: Clerks ku starting
salary 2500 yuan. 3 months
ku apram raise varum.
Person2: Fringe benefits
edhavadhu iruka?
...

Person2 is de-
scribing their
current com-
pany which
is the largest
and best in the
field, focusing
on children’s
toys. They have
a branch in
Shanghai with
2000 employ-
ees, totaling
10,000 employ-
ees worldwide.
Person1 is in-
terested in a
sales position
and asks about
the salary and
benefits, learn-
ing that Person2
currently earns
3000 yuan per
month with
allowances and
bonuses. Per-
son1 explains
that the starting
salary for clerks
is 2500 yuan, ...

LLM has com-
pletely switched
Person1 and
Person2 in the
first half of the
summary

Table 4.9: Error examples
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Conclusion and Future Work

5.1 Conclusion

In this work, we introduced DiaSynth, a synthetic dialogue generation frame-

work designed to produce high-quality, contextually rich dialogues across various

domains. Our experiments demonstrated that models fine-tuned on DiaSynth-

generated data significantly outperform their base models, as evidenced by sub-

stantial improvements in summarization metrics. These results highlight the po-

tential of DiaSynth as an effective tool for generating dialogue data, particularly for

domains where training data is scarce. Additionally, we found that different LLMs

excel in different dialogue structures, with LLaMA-3 performing better for infor-

mal dialogues and GPT-4o for more structured settings. This insight suggests that

leveraging open-source LLMs may be more advantageous for generating human-like

conversational data. Despite certain limitations, such as varying LLM performance

across dialogue types and knowledge gaps in zero-shot generation, DiaSynth offers

a promising approach to dialogue data generation and provides a valuable resource

for advancing dialogue systems.

In parallel, we introduced CS-Sum, the first benchmark for CS dialogue-to-English

summarization across three language pairs: EN-TA, EN-ZH, and EN-MS. Our

experiments showed that LLMs perform inconsistently across CS pairs, with open-

source models outperforming SEA-specific models, emphasizing the importance of

including CS data in pretraining rather than just adding it through fine-tuning.

Moreover, our analysis identified three major error types—CSL, MST, and SMA
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— which persist across all models, indicating that current LLMs lack intrinsic

CS comprehension. The quantitative results further highlight the severity of these

issues, showing that fine-tuning alone does not fully resolve the challenges posed by

CS data. By releasing CS-Sum, along with our codebase and evaluation framework,

we aim to drive future research in multilingual NLP, providing a benchmark to

better understand and address the shortcomings of LLMs when processing code-

switched data.

5.2 Future Work

Despite the promising results, our approach with DiaSynth has some limitations

that suggest potential directions for future research. One key area for improvement

is the performance variability across different dialogue structures. For instance,

certain models like LLaMA-3 perform better for informal dialogues, such as those

found in the SAMSum dataset, while others like GPT-4o excel in more structured,

formal dialogues, such as DialogSum. This indicates that there is no single model

that can universally handle all types of dialogue structures. Future work could

focus on combining models or selecting the best model for each type of dialogue

to improve overall performance. Additionally, DiaSynth’s reliance on zero-shot

generation for personas and sub-topics may result in less coherent or less accurate

persona simulations, particularly in domains where models are not fine-tuned for

specific contexts. To address these challenges, future research should explore in-

corporating more domain-specific training and fine-tuning to improve the accuracy

and coherence of persona simulations. Furthermore, DiaSynth’s reliance on LLMs

introduces challenges related to hallucinations and the compute requirements of

these models. While our hallucination study shows that the rates are acceptable,

further research should aim to reduce hallucinations and explore ways to optimize

the computational efficiency of the framework.

Regarding CS-Sum, our results indicate that LLMs still struggle with understand-

ing code-switching, even after fine-tuning. A key area for future work would be

training models on real-world code-switched data instead of relying solely on syn-

thetic examples. This would allow the models to better capture the complexi-

ties and nuances of natural code-switching in multilingual contexts. Another av-

enue for improvement would be exploring better tokenization methods to handle
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mixed-language inputs more effectively, which is a significant challenge in current

models. Since performance varies across different language pairs, expanding CS

benchmarks to include more language combinations—particularly low-resource lan-

guages—would be highly beneficial. Additionally, we observed that models often

favor English over non-English parts of code-switched text, indicating a bias in their

training. Future research should focus on developing better training techniques to

reduce this bias and enhance the models’ ability to process and understand non-

English components more equally. Addressing these challenges will be crucial in

creating LLMs that truly understand and generate accurate code-switched content

across diverse languages.
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